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ABSTRACT

Apache Spark is a popular framework for data analytics with
attractive features such as fault tolerance and interoperabil-
ity with the Hadoop ecosystem. Unfortunately, many an-
alytics operations in Spark are an order of magnitude or
more slower compared to native implementations written
with high performance computing tools such as MPI. There
is a need to bridge the performance gap while retaining the
benefits of the Spark ecosystem such as availability, pro-
ductivity, and fault tolerance. In this paper, we propose a
system for integrating MPI with Spark and analyze the costs
and benefits of doing so for four distributed graph and ma-
chine learning applications. We show that offloading compu-
tation to an MPI environment from within Spark provides
3.1—17.7x speedups on the four sparse applications, includ-
ing all of the overheads. This opens up an avenue to reuse
existing MPI libraries in Spark with little effort.

1. INTRODUCTION

As dataset sizes increase, there is a need for distributed
tools that allow for exploration and analysis of data that
does not fit on a single machine. Apache Hadoop provides a
fault-tolerant distributed filesystem as well as a map-reduce
processing framework that allows for analytics on large data-
sets. More recently, Apache Spark introduced the resilient
distributed dataset (RDD) which can be cached in memory,
thereby accelerating iterative workloads often found in ma-
chine learning [34]. In addition to map-reduce-style compu-
tation, Spark includes support for joins, as well as extensive
library support for graph computations, machine learning,
and SQL queries. These applications generally achieve more
than an order of magnitude better performance in Spark
compared to Hadoop for workloads that can leverage in-
memory data reuse.

Despite large speedups compared to Hadoop, Spark’s per-
formance still falls well short of the performance achievable
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with high performance computing (HPC) frameworks that
use native code and optimized communication primitives,
such as MPI [9]. For example, a recent case study found C
with MPI is 4.6-10.2x faster than Spark on large matrix fac-
torizations on an HPC cluster with 100 compute nodes [11].
Another case study on distributed graph analytics found
that for weakly-connected components, one can outperform
Spark’s GraphX library by up to two orders of magnitude
on a cluster with 16 compute nodes, with roughly 2000 lines
of C++ using OpenMP for shared-memory parallelism and
MPI for distributed communication [28].

The Spark environment provides many attractive features
such as fault-tolerance, as RDDs can be regenerated through
lineage when compute nodes are lost, as well as program-
mer productivity through the use of Scala and high-level
abstractions. We would ideally like to be able to use libraries
written for MPI and use data that originates in distributed
Spark RDDs, allowing users to temporarily trade the ben-
efits of the Spark environment in exchange for high perfor-
mance. However, this creates several problems. First, RDD
data lives in JVM processes that are not launched within an
MPI environment, and it is not immediately obvious how
one would configure an MPI environment on the fly start-
ing with these processes. Second, even if we could config-
ure such an environment on the fly, communicating between
Spark executors would potentially violate the assumptions
that Spark makes about RDDs. An RDD depending on an
MPI collective operation, for example, would not have this
dependence encoded in Spark’s own bookkeeping and there-
fore may not be recoverable in the event of a failure. Due
to these challenges, tight integration of MPI and Spark is
generally not practiced today.

In this paper, we propose Spark+MPI, a system for inte-
grating MPI-based programs with Spark. Our approach is to
serialize data from Spark RDDs and transfer the data from
Spark to inter-process shared memory for MPI processing.
Using information from the Spark driver, we execute plain
MPI binaries on the Spark workers with input and output
paths in shared memory. The results of the MPI process-
ing are copied back to persistent storage (HDFS), and then
into Spark for further processing. This approach requires no
changes to Spark itself, and it can adapt to changes in the
cluster, such as adding or removing compute nodes.

We contrast this with an another approach to integrat-
ing native code with Spark, which is to accelerate user-
defined functions (UDFs) in Spark by calling native C++
code through the Java Native Interface (JNI), while retain-



ing the use of Spark for distributed communication and
scheduling. This optimization technique is commonly em-
ployed. For example, many operations in Spark’s machine
learning and graph analysis libraries offload computation to
the Breeze library, which contains optimized numerical rou-
tines implemented in either Java or JNI-wrapped C.

To test our Spark+MPI system, we implement four dis-
tributed graph and machine-learning applications: Latent
Dirichlet Allocation (LDA), PageRank (PR), Single Source
Shortest Path (SSSP), and Canonical Polyadic Decomposi-
tion (CPD). We find that offloading computation from Spark
to MPI using our system can provide 3.1 — 17.7x speed-
ups compared to Spark-based implementations on real-world
large-scale datasets on a 12-node cluster. This includes time
spent transferring data to and from an MPI environment,
and any time required for MPI applications to construct any
special data structures.

To summarize, our contributions are the following:

1. We propose Spark+MPI, a system demonstrating tight
integration of Spark and MPI, which enables use of
existing MPI-based libraries in the Spark environment.

2. Our optimization strategies result in 3.1—17.7x speed-
ups on sparse graph and machine learning algorithms
compared to Spark-based implementations.

3. We quantify the overheads of Spark and show the lim-
its of alternative optimization strategies for augment-
ing Spark with native code.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 describes the design and
implementation details of our Spark+MPI system. Section 4
describes the four graph and machine learning applications
considered for optimization. Section 5 shows the application
implementations and alternative means of increasing Spark
performance. Section 6 describes our experimental setup,
including the hardware and software configuration, profiling
tools, and datasets. Section 7 presents performance and
profiling results and analysis, as well as insights gained from
our experiments. Section 8 offers conclusions from our work.

2. RELATED WORK

It has been widely noted that MPI-based HPC frameworks
outperform Spark or Hadoop-based big data frameworks by
an order of magnitude or more for a variety of different appli-
cation domains, e.g., support vector machines & k-nearest
neighbors [24], k-means [14], graph analytics [25, 28], and
large-scale matrix factorizations [11]. A recent performance
analysis of Spark showed that compute load was the primary
bottleneck in a number of Spark applications, specifically
serialization and deserialization time [22]. Our performance
results are consistent with this research.

Other work has tried to bridge the HPC-big data gap by
using MPI-based communication primitives to improve per-
formance. For example, Lu et al. [19] show how replacing
map-reduce communicators in Hadoop (Jetty) with an MPI
derivative (DataMPI) can lead to better performance; the
drawback of this approach is that it is not a drop-in replace-
ment for Hadoop and existing modules need to be re-coded
to use DataMPI.

It has been shown that it is possible to extend pure MPI-
based applications to be elastic in the number of nodes [23]
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Figure 1: Spark+MPI implementation overview: data is
transferred from Spark to shared memory for MPI process-
ing, then back to Spark through HDFS.

through periodic data redistribution among required MPI
ranks. However, this assumes that we are still using MPI as
the programming framework, hence we do not get the other
benefits of processing in the cloud with Spark or Hadoop,
such as high productivity or fault tolerance.

Efforts to add fault tolerance to MPI have been ongoing
since at least 2000, when Fagg and Dongarra proposed FT-
MPT [8]. Although the MPI standard has still not integrated
any fault tolerance mechanism, proposed solutions continue
to be put forth, e.g., Fenix [10]. However, there is a large
productivity gap between the APIs of Fenix and Spark.

Several machine learning libraries have support for inter-
operating with Spark, such as H20.ai [13] and deeplearn-
ing4j [7], and include their own communication primitives.
However, these are Java-based approaches and do not pro-
vide for direct integration of existing native-code MPI-based
libraries.

SWAT [12], which stands for Spark With Accelerated Tasks,
creates OpenCL code from JVM code at runtime to improve
Spark performance. As opposed to our work, SWAT is lim-
ited to single-node optimizations; it does not have access to
the communication improvements available through MPI.

Thrill [4] is a project building a Spark-like data processing
system in C++ and using MPI for communication. Unlike
Thrill, our goal is not to build an entirely new system, but
rather to augment the existing successful Spark ecosystem
with available performant MPI-based libraries.

3. SPARK+MPI SYSTEM DESIGN AND
IMPLEMENTATION

Spark+MPI bridges the gap between big data and HPC
frameworks by taking the best of both worlds: Spark fault
tolerance and productivity, MPI performance. We achieve
this by basing our design on RDDs, using the Spark re-
source management infrastructure to launch MPI processes,
and providing a high-level API that integrates seamlessly in
Spark.

We designed Spark+MPI as an extension to Spark which
enables access to standard MPI implementations, therefore
users are not required to install a special distribution of
Spark or a custom MPI implementation.

3.1 Implementation

We implemented Spark-+MPI using the Linux shared mem-
ory file system /dev/shm for exchanging data efficiently be-
tween Spark and MPI. Figure 1 depicts a high-level overview
of our implementation.



We begin with data stored in a distributed RDD within
Spark with the goal of using MPI-based libraries to pro-
cess the data. The first step is to make the data accessible
to the MPI processes. We serialize and write the data to a
memory region mapped to /dev/shm using a mapPartitions
transformation on the RDD that we would like to copy. The
mapPartitions operation produces a partition ID and a host
name associated with each partition, which are collected by
the Spark driver. This collect operation forces Spark to per-
form the action and copy the data. Next, the driver uses
the partition information to launch an MPI execution us-
ing the standard mpiexec command. The MPI execution
receives a configurable amount of RAM, which is not avail-
able to Spark. The MPI execution performs the application-
specific computation by consuming the binary data prepared
by Spark; it produce new binary data, which is also stored
in /dev/shm. When we are done computing using MPI, we
write the results to HDFS. Then, the results are read from
HDFS into Spark and stored as a new RDD. Since HDFS is
persistent and fault-tolerant, storing the results of the MPI
computation in HDFS guarantees that they will be preserved
regardless of future failures.

3.2 API

The API of Spark+MPI is composed of Scala and C++
functions. The following Scala functions allow for a tradi-
tional Spark program to call an MPI program:

rddToNative(rdd, serializeFn)->inputHandle  The
first function in the API, rddToNative, prepares an
RDD for MPI processing. rddToNative requires a se-
rialization function that produces output in the binary
format expected by the MPI program.

emptyNative(inputHandle)->outputHandle Creates
a placeholder for the output of the MPI binary using
information about the compute nodes from the RDD
pre-processed by rddToNative.

runMPI(inputHandle, outputHandle, binary, args)
Calls the MPI binary specified as a file system path us-
ing the input and output data handles and additional
application-specific arguments.

nativeToHDFS (outputHandle)->hdfsPath Saves the
output of the MPI binary to persistent HDF'S storage.

nativeToRDD (deserializeFn, hdfsPath)->outputRDD

Makes the MPI output available to further Spark pro-
cessing by transforming it to an RDD. nativeToRDD
requires a deserialization function which builds JVM
objects from the application-specific binary data.

The last two functions in the API, nativeToHDFS and
nativeToRDD, can be omitted when building a pipeline that
repeatedly calls MPI binaries, thus amortizing the cost of
HDFS I/0O. Furthermore, these functions can be used as a
checkpoint-restore mechanism to balance the advantages of
avoiding HDFS I/O with the risk of compute node failures.

While Spark+MPI works with standard MPI implemen-
tations, applications must use our C++ API to access input
and output data:

partition Structure that stores data along with metadata
about the compute nodes used for processing.
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Figure 2: Latent Dirichlet Allocation - graphical model.
Only the words are observed. « and 7 are hyperparame-

ters. 0; and ¢, are probability distributions over topics and
words respectively.
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binaryFiles(inputHandle)->partitionsIn Prepares
C++ input data structures based on the input handle
received from the Scala API.

savePartitions(partitionsOut, outputHandle)  Pre-
pares serialized output in the format required by the
Scala API based on the partitions outputted from
application-specific C++ processing.

4. APPLICATIONS

We use the following graph and machine learning algo-
rithms as driving applications throughout the paper: La-
tent Dirichlet Allocation, PageRank, Single Source Shortest
Path, and Canonical Polyadic Decomposition.

4.1 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) tries to group docu-
ments (which are modeled as bags of words) into “topics”
(which are defined as a probability distributions over words).
Figure 2 shows the graphical model used in LDA. For de-
tails on the LDA model, we refer the readers to Blei et al. [5].
We use Maximum a Posteriori (MAP) estimation using an
Expectation—-Maximization (EM) algorithm in order to learn
the topic and word distributions [3]. Assuming we have J
documents and a W word vocabulary, each document j has
a word count vector N,; for word w. This is modeled as a
bipartite graph of size (J + W) x (J + W) with edges (w, j)
with weights N, ;. a and n are the priors to the Dirichlet
distributions 6; and ¢, for k topics, as shown in Figure 2.

The EM algorithm works iteratively. At each iteration,
the following updates are performed.

(Nwk +7 = 1)(Ngj +a—1)

wj = 1

Yuwjk Ni+Wn—W (1)

A Ywik

wj = 2

’Y ik Zk 'ijk ( )
J
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N, = Zka:ZNkj (5)
w J

Once the iterations are complete, the MAP estimates of
0 and ¢ are obtained as

~ Nijrafl ~

0, = bk = Nuw +1—1
MT N+ Ka—-K

Ne+Wn—-W (6)



4.2 PageRank (PR)

PageRank (PR) is an algorithm used to rank vertices on
the basis of how probable it is for them to be encountered
on a random walk along the edges of a directed unweighted
graph. It was originally used to rank web pages with the
pages themselves modeled as graph vertices and hyperlinks
as edges. The algorithm iteratively updates the rank of each
vertex according to the following equation:

Z M (7)

t+1,0N _
PR (v)=r4+(1-r)x degree(u)
ul|(u,v)EE
where PR'(v) denotes the page rank of vertex v at itera-
tion ¢, F is the set of edges in a directed graph, and r is the
probability of random surfing. The algorithm is run until
the page ranks converge.

4.3 Single Source Shortest Path (SSSP)

Single Source Shortest Path (SSSP) is an algorithm used
to find the shortest path from a given vertex to all the other
vertices in a directed, weighted graph. The algorithm is
used in many applications such as finding driving directions
in maps or computing the min-delay path in telecommuni-
cation networks. The algorithm starts with a given vertex
(called source) and iteratively explores all the vertices in the
graph to assign a distance value to each of them, which is
the minimum sum of edge weights needed to reach the vertex
from the source. At each iteration ¢, each vertex performs
the following;:

Distance(v) = min(Distance(v),

ming|(y,0)e p{ Distance(u) + w(u,v)}) (8)

where w(u,v) represents the weight of the edge (u,v). Ini-
tially the Distance for each vertex is set to oo except the
source with Distance value set to 0. We use a slight vari-
ation on the Bellman-Ford shortest path algorithm where
we only update the distance of those vertices that are ad-
jacent to those that changed their distance in the previous
iteration.

4.4 Canonical Polyadic Decomposition (CPD)

Tensors are the generalization of matrices to higher di-
mensions (called modes). The CPD is one generalization
of the singular value decomposition to tensors and has uses
in many applications such as web search [16], collaborative
filtering [26], and others [27]. The rank-F CPD models a
tensor X € RI > *IN with factor matrices A e R *F
o, AP e RINXE The CPD, shown in Figure 3, is most
intuitively formulated as the sum of outer products.

The CPD is a non-convex optimization problem and most
commonly computed using alternating least squares (ALS).
ALS cyclically updates one factor matrix at a time while
holding all others constant. The matricized tensor times
Khatri-Rao product (MTTKRP) is the bottleneck of ALS
and is a generalization of sparse matrix-vector multiplication
(SpMV) [17]. When updating the nth factor matrix, the
MTTKRP computes the matrix K € R*F and uses the
remaining (N—1) factor matrices. Suppose the non-zero v

yZ4 yZ4

—

- H +...+H

Figure 3: Tensor decomposition as a sum of outer products.

has coordinate (i1,...,in). The MTTKRP updates K via:

K, <« K, +tv (A(l) wox ATD G Al Ly A(-N)) )
, 1 i1 in—1 Tn41 N
(9)
where M; denotes the ith row of a matrix M and * de-
notes the Hadamard (element-wise) product. Like SpMV,
distributed-memory MTTKRP requires up to two commu-
nication stages: (i) aggregating partial computations and
(i) exchanging the new elements of the factor matrix [15].

S. APPLICATION IMPLEMENTATIONS

In this section we describe our strategies for implementing
and optimizing the aforementioned applications in Spark.
First, we consider Spark-based libraries as a baseline. Sec-
ond, we consider offloading key computations into optimized
C++ routines and calling these using JNI, while retaining
the use of Spark for distributed communication and schedul-
ing. Third, we offload the entire computations from Spark
into the MPI environment using our Spark+MPI system,
which allows us to leverage existing high-performance MPI-
based libraries.

5.1 Spark libraries

Three of the four applications we consider are readily
available in existing Spark libraries. We use the built-in
PR provided by GraphX [33]. For SSSP, we use the Pregel
framework in GraphX. For LDA, we use the MLIlib [21] im-
plementation which is based on Expectation—-Maximization
(EM), and also uses GraphX data structures and computa-
tional primitives. These implementations store both vertex
properties and edges as distributed RDDs, and use shuffles
to communicate this data between machines during each it-
eration.

We implemented CPD ourselves, as no Spark implemen-
tations exist, to the best of our knowledge. Our version uses
Spark’s parallel primitives for the distributed MTTKRP op-
eration in Equation 9. The results of the MTTKRP opera-
tions are collected by the driver. Operations on the factors
are done on the driver node using dense linear algebra rou-
tines provided in the Breeze library.

5.2 Optimized Spark

Recently, MLlib added support for optimized linear alge-
bra operations on sparse and dense matrices [6]. One sug-
gested usage model for sparse matrix operations in Spark is
to do matrix operations in a distributed fashion and vector
operations on the driver. This means that vectors are first
broadcast to the executors, operated on, and then collected
back to the driver during each iteration of an algorithm.
If the vectors do not fit on the driver, then a different set
of matrix-vector routines can be used which distribute the
vectors as well as the matrices. We implemented our appli-
cations following the same communication and computation
model as Spark’s sparse matrix-vector (SpMV) multiplica-
tions [6]. We refer to our implementations as OptSpark.
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Figure 4: OptSpark: iterative sparse algorithms with JNI,
modeled after MLIlib’s sparse matrix operations. Matrix
data is stored in 1D partitions on executors where it is pro-
cess in a distributed fashion, while vector operations take
place on the driver.

For our applications and hardware configuration, the vec-
tors do fit on the driver and so we implemented the applica-
tions based on the MLIlib 1D SpMV communication pattern,
shown in Figure 4. For example, for PR, the graph dataset
becomes a sparse matrix with a nonzero for every edge.
In the case of a Twitter follower-followee graph, the vector
stores a single ranking for each Twitter user. The matrix
rows (i.e., the Twitter users) are distributed across execu-
tors. At every iteration, the vector is first broadcast from the
driver to the executors. For PR and SSSP, a custom matrix-
vector operation is implemented using C++ routines made
available through the Java Native Interface (JNI). This cus-
tom matrix-vector operation is applied to the input vector
and returned to the driver using collect, where it is used
to update the vector for the next iteration.

We implemented OptSpark PR and SSSP using the afore-
mentioned approach, with the following implementation de-
tails. In order to maximize the granularity of our calls
through JNI, we merge all rows within a partition of the
sparse matrix into a single Compressed Sparse Row (CSR)
representation. Each array that is needed inside the native
function is accessed using GetPrimitiveArrayCritical to
avoid unnecessary copies between Java and native arrays.
We assume that the partition ID does not change during
execution, so we can collect the matrix row indices on the
driver ahead of time which reduces the total size of the col-
lect. The driver also uses OpenMP-parallelized JNI func-
tions to update the vectors before and after each iteration.

For LDA and CPD, we provide a best-case per-iteration
performance estimate using the following micro-benchmark.
We simulate algorithm iterations with the following steps:
(1) broadcast random data with type Array[Doublel to
the workers, (2) perform a map over each partition of the
dataset, where each task copies a portion of the broadcast
variable into a result array, and (3) collect partitions of
the result array, packaged as (Int, Array[Doublel), to the
driver. The broadcast and collected data is sized according
to the algorithm being simulated. This micro-benchmark
gives us a lower-bound estimate of runtime per iteration, by
assuming that the matrix-vector operation compute time is
negligible. For the LDA micro-benchmark we broadcast a
dense double-precision matrix of size (J+W) x K and collect
a matrix of the same size back to the driver. For the CPD
micro-benchmark, we do one broadcast/collect for each fac-
tor. Broadcasting all CPD factors at once caused caused
problems in Spark due to the large total size of the factor
matrices.

5.3 Spark+MPI

For the Spark+MPI implementation of the applications,
we use two readily available MPI-based libraries.

For PR, SSSP, and LDA, we use GraphMat [32], a frame-
work for graph analytics. It provides high performance by
leveraging optimized OpenMP-parallel sparse matrix prim-
itives. GraphMat was recently extended to distributed sys-
tems through the integration of MPI-based distributed prim-
itives [2]. Graph data is distributed across nodes in a 2D
block cyclic format and vertex properties are distributed
across nodes as well. Messages derived from vertex prop-
erties are compressed into sparse vectors and sent to other
nodes using MPI. Local sparse matrix-vector multiplications
are parallelized with OpenMP.

For CPD, we use the Surprisingly Parallel. spArse Ten-
sor Toolkit (SPLATT), an MPI4+OpenMP library for fac-
toring large, sparse tensors [30]. It uses a medium-grained
decomposition which distributes an N-mode tensor over an
N-dimensional grid of MPI processes [31]. The medium-
grained decomposition requires two communication stages,
but limits communication in the ¢th mode to processes that
share a coordinate in the ith dimension of the process grid.

6. EXPERIMENTAL SETUP

To test the performance of Spark+MPI, we perform ex-
periments on a cluster with up-to-date hardware and soft-
ware using datasets representative for the applications we
consider.?

6.1 Configuration

Each machine in our cluster has 2 Intel® Xeon® E5-
2699 v4 processors (22 cores, 44 threads each), 128 GiB
DDR4 RAM, an SSD, a 1 Gbit/s Ethernet interface, and
a 100 Gbit/s Intel® Omni-Path interface. We use CentOS
7.2 (with Linux 3.10), Intel® Compiler 16.0.3, Intel® MKL
11.3.3, Intel® MPI 5.1.3, Oracle Java 1.8.0, HDFS 2.7.2,
and Spark 2.0.0.

Our cluster has 13 machines. We run the HDF'S and Spark
master on one machine, the Spark driver on another ma-
chine, and 11 Spark workers on the remaining machines in
the cluster. When we run MPI on the cluster, it uses the 12
compute nodes (the driver + 11 workers).

Spark is configured to use the G1GC garbage collector
and the Kryo serializer. We considered (1) allowing Spark
to choose the default number of partitions based on the num-
ber of HDF'S blocks, (2) setting the number of partitions to
the total number of cores, and (3) setting the number of
partitions to twice the number of cores. We found that (1)
provided the best overall performance for all Spark imple-
mentations except for CPD which excelled with (3). We use
this setting for our results. We also use the default parti-
tioning strategy for GraphX data structures. When Spark is
running alone, we give 96 GiB of memory for both the driver
and the executors. When we run MPI alongside Spark, we
give the Spark driver and executors 80 GiB of memory. We

1Software and workloads used in performance tests may have been op-
timized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the per-
formance of that product when combined with other products. For
more information go to http://www.intel.com/performance



set the number of driver and executor cores to 88, which is
equal to the number of threads the CPUs can execute con-
currently, meaning that one executor runs per worker. When
we launch MPI, we set the number of OpenMP threads to
44, equal to the number of cores in each machine. We run
one MPI process per machine.

We disregard the time to initially load input datasets from
HDFS into Spark. Each benchmark begins timing only after
the input dataset has been loaded from HDFS, stored in an
RDD which is cached using cache, and then counted which
ensures that the previous tasks complete before moving on
to the rest of the application. Because Spark uses lazy ex-
ecution, we need to take actions such as these to ensure
that all computations are actually executed at the expected
time during each benchmark. PR, SSSP, and LDA all pro-
duce their outputs in RDDs. We call cache and count on
these outputs to do this, and we include the runtime for this
overhead as part of the total algorithm runtime. For CPD,
both the Spark implementation and Spark+MPI implemen-
tation produce outputs on the driver. The overhead time
to transfer these outputs from RDDs to the driver for the
Spark+MPI implementation is included as part of the total
algorithm runtime. We also call cache and count on the
Spark data structures after their construction and include
this as part of Spark data structure construction time.

PR, LDA, and CPD all use double-precision arithmetic
for all implementations. For SSSP, we store the depths as
Int for all implementations. GraphX represents vertex IDs
as Long, while GraphMat and OptSpark store these as Int.

We run PR for 54 iterations, which is the total number
of iterations required for convergence in GraphMat for our
dataset (for Spark and SparkOpt, we set the number of iter-
ations to this number). We solve LDA with 20-dimensional
factors, @ and 7 equal to the Spark defaults (3.5 and 1.1,
respectively), and run for 10 iterations. We run CPD with
10-dimensional factors for 22 iterations, which is the total
number of iterations needed for convergence in SPLATT.
SSSP naturally runs the same number of iterations in each
implementation. Micro-benchmarks run for 10 iterations to-
tal and the runtime of the first iteration is discarded.

For system-level performance analysis, we use the sar tool
from the Sysstat package executed with the Intel Perfor-
mance Analysis Tool?. We collect samples every 1 s for
CPU usage and network transfer.

To analyze Spark implementations, we developed an event
log parser that computes aggregate metrics from the Spark
event log for the following components: scheduler delay, task
deserialization and result serialization, data shuffling, and
algorithm computation. To identify bottlenecks, we calcu-
late the observed time of each of these components while
accounting for task-level parallelism. For example, to calcu-
late the observed data shuffling time for a stage, the parser
reconstructs the task events from the timestamps, and then
subtracts the time for data shuffling in each task to com-
pute the stage runtime as if without the data shuffling. The
observed data shuffling time is the difference between this
hypothetical stage runtime and the actual stage runtime.

6.2 Datasets

Table 1 summarizes the datasets used in our performance
evaluation. Twitter is a graph of the “follower-followee” re-
lationships from 41.7 million user profiles in 2010. We use

Zhttps://github.com/intel-hadoop/PAT

Table 1: Dataset Summary

Dataset Records Record Type
Wikipedia [1] 0.7 billion (DocID, WordID, Count)
Tuitter [18] 1.5 billion (SrcID, DstID, Weight)

Amazon [29, 20] 1.7 billion  (UserID, ItemID, WordID, Count)

Twitter for both PR and SSSP. For LDA, we use Wikipedia,
a sparse term-frequency matrix formed from 3.3 million Wiki-
pedia articles. For CPD, we use Amazon, which is a sparse
tensor of user-product-word triplets taken from product re-
views. Each non-zero X, .. in Amazon is the frequency of
word w appearing in user u’s review of product i.

7. RESULTS

In this section, we provide performance evaluation results,
as well as insight into the bottlenecks that are behind the
results.

7.1 Overall performance

Table 2 shows the runtime for all implementations on each
of the four algorithms. These runtimes are broken down
further into categories:

e Build Time: Time to construct a data structures
needed for computing the algorithm result, for example
going from a collection of records to a graph or sparse
matrix data structure. This step can potentially be
amortized by running several similar algorithms on the
same data.

e Compute Time: Time which is specific to a given
algorithm, where the inputs and outputs exist in the
most easily accessible formats for a given implementa-
tion. This includes both computation and any inter-
node communication required for the algorithm.

e Overhead: The total time minus the build time and
compute time. For Spark+MPI this includes the time
to transfer data between the Spark and MPI environ-
ments. It also includes the time to construct the cor-
rect output format (e.g., cached RDD or on driver) in
Spark.

e Total Time: The time to compute the result, begin-
ning with a cached RDD and ending with the applica-
tion result (cached RDD for PR, SSSP, and LDA ; on
driver for CPD)

We also present the following speedup metric, which is
normalized to the runtime of the Spark implementation for
each algorithm.

e Overall Speedup: The ratio of one implementation’s
total time to another implementation’s total time. This
considers all overheads, including building the data
structures, computing the result, and any overheads
we cannot attribute more specifically.

The OptSpark implementations are able to achieve a 1.8
and 1.9x overall speedup on PR and SSSP, respectively.
The overall speedup for OptSpark SSSP, compared to Spark
SSSP, is substantially less than its improvement in compute
time. This is due to the relatively large cost of building



Table 2: Runtime Summary

Application Implementation Build Time (s) Compute Time (s) Overhead (s) Total Time (s) S(;Zifiﬂl)
PR Spark 28.8 413.9 0.6 443.3 -
OptSpark 67.5 214.1 5.3 286.8 1.9
Spark+MPI 8.8 9.1 17.6 35.5 12.5
SSSP Spark 27.8 150.6 0.6 178.9 -
OptSpark 62.7 34.2 4.5 101.4 1.8
Spark+MPI 9.0 2.1 21.6 32.6 5.5
LDA Spark 20.9 449.0 0.6 470.5 -
Spark+MPI 4.1 19.4 18.7 42.2 11.1
CPD Spark 0.0 1883.1 0.0 1883.1 -
Spark+MPI 38.7 33.8 33.8 106.3 17.7
the sparse matrices used in OptSpark SSSP. This cost could 200
potentially be amortized across multiple algorithms. 180
The build time varies across implementations because the
details of the data structures needed for each is different. 160
In PR, for example, Spark+MPI does a global shuffle and 1“0 - _emm T T e
builds a compressed-sparse-row matrix which is used for @120 000 -7 e
further computation. The OptSpark implementation also S
. . . ol s . £ 100
builds a sparse matrix, but it does it in Spark using the =
GroupByKey primitive. The Spark implementation builds g8 e
a GraphX graph which consists of a vertex RDD and edge 60
RDD. a0
The Spark+MPI implementations achieve 5.5—17.7 X over-
20

all speedup compared to Spark, and a 3.1x and 8.1x overall
speedup compared to OptSpark on SSSP and PR, respec-
tively. The overall speedup includes all overheads for trans-
ferring data to and from Spark. Spark+MPI spends the
majority of its time in build time and overhead. Therefore,
the Spark+MPI approach could become more efficient if we
amortized these overheads, for example by running more
iterations of each algorithm, or by running multiple MPI
analyses on the same data.

We compare the per-iteration runtime of the PR micro-
benchmark to the real per-iteration runtime of OptSpark
PR. The micro-benchmark shows an average per-iteration
runtime of 2.9 s, and a minimum of 2.5 s, compared to an
average per-iteration runtime of 3.5 s for OptSpark. The
LDA micro-benchmark shows a per-iteration runtime aver-
age of 14.9 s, and a minimum of 12.6 s. The CPD micro-
benchmark shows a per-iteration runtime average of 19.2 s,
and a minimum of 14.6 s. These per-iteration best-case
runtime estimates are well above the measured runtimes of
Spark+MPI for LDA and CPD. No Spark implementation
of these algorithms, using this communication pattern, can
reduce the cost of this broadcast. Therefore, this is a funda-
mental limitation of Spark implementations which use the
aforementioned broadcast/reduce pattern, compared to our
Spark+MPI implementation.

7.2 Performance vs. number of iterations

Even for the relatively costly algorithms considered in this
paper, the best approach to take depends on the number of
iterations executed and whether or not data structure con-
struction can be amortized. Figure 5 shows the total run-
time for PR, including build time, for different runs from 1
to 20 iterations. In this situation, the Spark implementation
has roughly the same performance as Spark+MPI for small
numbers of iterations. Spark is also faster than OptSpark in
these cases, since the OptSpark build time and degree calcu-

o

12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20
Iterations

OptSpark Spark+MPI
Figure 5: Total runtime for PR, for different runs between
1 and 20 iterations.

lation are more costly than Spark’s. After about four itera-
tions, Spark+MPI begins to be more efficient. Though not
shown on the graph, OptSpark eventually overtakes Spark
due to its faster per-iteration runtime.

7.3 System-level profiling

We investigate the resource usage of each application to
understand the performance differences between the sys-
tems. Figures 7 and 8 shows the mean CPU usage averaged
across workers during the compute portion of the runtime
for PR and LDA respectively. Recall that we sample CPU
usage every second. For Spark implementations, we note
a cyclic pattern of high and low CPU usage periods corre-
sponding to the iterations in the applications, especially for
LDA. Overall, for Spark+MPI, CPU usage is significantly
higher and more consistent. MPI communication is faster
and does not keep the CPU idle. Finally, OptSpark exhibits
a pattern similar to Spark, but has a lower CPU usage, in-
dicating that the more efficient native code is hindered by
Spark communication primitives.

Table 3 shows the total CPU and network utilization av-
eraged across workers during the compute portions of the
applications. The CPU usage difference between Spark and
Spark+MPI is approximately in proportion to the applica-
tion compute time difference. Spark workers perform much
more computation to achieve the same results as Spark+MPI
workers. On the other hand, OptSpark workers perform ap-
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Table 3: CPU and network total utilization during compute.
CPU (s) Network (Gbit)

App  System

LDA  Spark 111 284
Spark+MPI 11 431
PR Spark 61 481
OptSpark 9 217
Spark+MPI 9 282
SSSP  Spark 21 70
OptSpark 4 14
Spark+MPI 2 33
CPD  Spark 547 598
Spark+MPI 23 105

proximately the same amount of computation as Spark+MPI
workers. Therefore, the compute time performance gap be-
tween OptSpark and Spark+MPI is attributable to other
factors, which we explore in Section 7.5.

7.4 Spark profile

Figure 6 shows a breakdown of each job for PR in Spark,
computed with our log parser using data from Spark’s logs.
There is one job per iteration, and the algorithm runs for
54 iterations. The large runtimes for early jobs are likely
because of data structure construction. For a typical itera-
tion, the vast majority of the runtime is classified as algo-
rithm time, which means time that is spent executing the
task. Algorithm time is distinct from scheduler overhead,
serialization and deserialization time for the task, as well as
shuffle time.

Though not shown here, the other applications have the
same property with respect to algorithm time. For PR,
SSSP, LDA, and CPD, algorithm time accounts respectively
for 92%, 95%, 95%, and 91% of the total job time. We can
relate this with the results of system-level profiling in Sec-
tion 7.3. These results show that during the compute por-
tion, Spark implementations used significantly more overall
CPU resources than either OptSpark or Spark+MPI imple-
mentations. The logs suggest that, for Spark implementa-
tions, these CPU cycles are spent inside of the Spark tasks.

Figure 9 is a screenshot from the Java Flight Recorder
profiler, showing the state of six threads (vertical axis) over
time (horizontal axis) running several iterations of PR on
one cluster node. We observe load imbalance across threads;
furthermore, we have noticed load imbalance across cluster
nodes from the logs (not depicted). We attribute the load



Figure 9: Spark PR Java Flight Recorder profile for 6 ex-
ecutor threads running several iterations. Green indicates a
running thread, gray indicates a parked thread (in this case,
waiting for a task).
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Driver
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Figure 10: OptSpark PR Profile

imbalance to the irregular graph computation, combined
with Spark’s barrier-based execution. Using the profiler, we
also note that fewer threads are being used than are avail-
able in the CPUs, because Spark is using fewer partitions
than available cores, for best performance (see Section 6.1.
Overall, the Java Flight Recorder analysis explains the jig-
saw aspect of the CPU usage in Figure 7.

7.5 OptSpark profile

As shown in Table 3, the compute portion of the OptSpark
implementation uses roughly an order of magnitude fewer
CPU resources than the Spark implementations, and roughly
the same total CPU resources as the Spark+MPI implemen-
tation. However, the performance of OptSpark is still well
below the performance of Spark+MPI. We use the Spark
logs, as well as our own custom application timestamp pro-
filing to elucidate OptSpark’s performance profile.

We performed application-level breakdowns of the PR and
SSSP OptSpark implementations, which are shown in Fig-
ures 10 and 11. The applications begin with a large amount
of time devoted to building data structures (matrices). We
also delineate pre/post processing time, such as comput-
ing vertex degrees for PR and constructing and caching
the output RDDs. Within the main iteration loop of each
algorithm, we separate the runtime into (1) the average
time spent by the driver to prepare the broadcast variable
(sc.broadcast()), (2) the average time spent in the dis-
tributed job, including the collect() operation, and (3)
average time the driver spends computing the vector for the

Build
Matrices

62.69s

Pre/Post-processing

Driver | 0.11s
Bcast
@ration 0.98s  Distributed Overhead
Job 0.69s (e.g. bcast read)
spMv | 0.24s

Driver ,
Compute | 0.17s

Figure 11: OptSpark SSSP Profile

Figure 12: OptSpark PR Java Flight Recorder profile for
several executor threads. Green indicates a running thread,
gray indicates a parked thread (in this case, waiting for a
task), and pink indicates a blocked thread (in this case, wait-
ing for the broadcast variable to be read).

next iteration. Within the distributed job, we also calculate
the time spent doing the SpMV (single JNI call per task).
For this, we compute the maximum JNI runtime for each job
across all executors, which determines the actual duration
of the job, and average this across all iterations.

A significant portion of the OptSpark PR runtime is not
spent actually computing the SpMV. Instead, it is spent
either broadcasting the variable on the driver, reading the
broadcast variable on the executor, or collecting the result
on the driver. In fact, the average time per iteration we mea-
sured in the JNI SpMYV is roughly comparable to the average
time per iteration in our Spark+MPI native SpMV imple-
mentation. This indicates that the bottleneck for OptSpark
PR lies in the broadcast/reduce overheads. This addition-
ally helps to explain why the total CPU resource usage is
lower for OptSpark. Operations, such as reading the broad-
cast variable, may create a dependency which can delay all
running tasks.

For OptSpark SSSP, the time spent in the JNI SpMV por-
tion is higher than in OptSpark PR. This is because SSSP
transfers less data from driver to executors per iteration than
OptSpark PR, due to sparsity inherent in SSSP. However,
the JNI SpMV portion still only accounts for 35% of the
average distributed job runtime, which suggests that broad-
cast and collect are also a significant performance bottleneck
for OptSpark SSSP.

Figure 12, a Java Flight Simulator PR screenshot, shows
very little compute time in each thread, which confirms our
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application profiling results in Figure 10. In Spark appli-
cations, the broadcast variable is read by only one thread
and the other threads are blocked during this time; this is
represented in the pink in the figure. Note the short SpMV
computation in each thread (green) after the broadcast vari-
able is read. Gray indicates the results are being collected
by the driver, the driver is computing alone, or the driver is
preparing the next broadcast variable.

7.6 Spark+MPI profile

Figure 13 shows a breakdown of total Spark+MPI run-
time, including overheads incurred when transferring data
between the Spark and MPI environments. PR and SSSP
overheads are almost identical because the sizes of the in-
put graph and output data are roughly the same. However,
the SSSP computation is much smaller so this means that
the overheads are a much larger percentage of total SSSP
runtime compared to PR. The time to transfer data from
Spark to shared memory, and from HDFS back into Spark,
is roughly proportional to the size of the input and output
data. The portion of time spent in compute ranges from a
minimum of 6% (SSSP) to a maximum of 46% (LDA). This
show great potential for gains through repeated MPI com-
putations in a pipeline, which would amortize the overheads.

7.7 Fault tolerance

One of the benefits of Spark is its ability to detect and
recover from faults. When one or more RDD partitions are
discovered to be missing, if the missing RDD partitions can-
not be found in persistent storage, Spark is able to regener-
ate them by examining the record of RDD transformations
which generated the missing partitions and re-executing op-
erations if necessary.

Since Spark+MPI performs operations outside of the Spark
environment, we can not rely entirely on Spark’s recovery
mechanisms. Instead, we restart the entire Spark+MPI
computation in response to a fault. We perform experiments
to quantify the performance cost of our approach compared
to Spark’s fault recovery for the same workload. We simu-
late faults by killing the HDFS and Spark processes of one
of the cluster nodes after the last iteration of the algorithm
commences. This represents the worst-case fault timing.

Table 4: Fault recovery runtime for 10 iterations of PR on
Twitter.

No fault (s) Restart (s) Recovery (s)

Spark 90.5 235.4 2461.6
Spark+MPI 32.1 85.5 -
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Figure 14: Spark+MPI PR runtime with restart after fault.

Table 4 shows the performance of Spark and Spark+MPI
in the presence of the aforementioned fault for 10 iterations
of PR. No fault is the regular runtime without any fault.
Restart is the runtime with a fault simulated by killing the
HDF'S and Spark processes and then restarting the compu-
tation in the user code. Recovery is the time it takes Spark
to regenerate the output using lineage information, which
means we simulate the fault by killing processes, then call
count on the RDD which contained the output of PR. There
is a 2.6 x overall slowdown in Spark if you completely restart
the computation from the beginning, and a 27x slowdown
for relying on recovery from lineage. We therefore conclude
that Spark libraries could benefit from application-level fault
recovery.

Figure 14 shows the runtime breakdown for Spark+MPI
when there is no fault, and when there is a complete restart
after fault detection. The overall runtime is 2.7x higher in
the case of a fault compared to no fault. The runtime is bro-
ken down into ten segments which occur chronologically: (1)
Copying the RDD to shared memory for the first time, (2)
building the graph data structure, (3) computing PR itera-
tions, (4) 10 seconds of wait time while killing process, (5)
Spark regenerating the input RDD after restart and copy-
ing it to shared memory for the second time, (6) building
the graph data structure for the second time, (7) computing
PR iterations for the second time, (8) writing the results to
HDFS from MPI, (9) reading the results from HDFS into
Spark, and (10) time otherwise unaccounted for.

It takes much longer to copy the RDD after the fault,
shown in segment (5), than before the fault. This is due
to Spark needing to regenerate the inputs from HDFS. It
also takes longer to (6) build data structures in MPI, and
(7) compute in MPI during the second run. Since there
are only 11 compute nodes, a prime number, GraphMat is
forced to use a 1D layout instead of the usual 2D layout,
which hurts performance.



7.8 Summary

Spark+MPI has runtime and memory overheads, which
depend on the size of input and the output of the oper-
ation. Among our four application experiments, it takes
between 3 — 5 seconds to transfer inputs to MPI through
shared memory, and between 9 — 19 seconds to transfer out-
puts back into Spark through HDFS, plus between 4 — 8
seconds of otherwise unaccounted time which may be re-
lated to data transfer. By comparison, simple operations in
Spark, such as count, can complete in one second or less on
the same datasets. Using Spark+MPI only makes sense for
operations which run slower in Spark than these fixed over-
heads. Simple operations, such as scaling a vector stored in
an RDD, should be done in Spark.

As long as there is enough work to amortize these fixed
overheads, applications can benefit from Spark+MPI. How-
ever, some other applications may run with similar efficiency
in Spark, namely those which have less communication vol-
ume and frequency. Since the main benefit of MPI is op-
timized communication primitives, applications which have
more communication and more complex communication pat-
terns will benefit relatively more from Spark+MPI.

8. CONCLUSIONS

There is a large gap between the efficiency of Spark and
MPI. This gap is exemplified by the variance in compute
time we observed for Spark, OptSpark, and Spark+MPI.
We sought to explain the nature of the gap by optimizing
and profiling Spark to better understand its performance.
The system we introduce in this paper, Spark+MPI, is a
solution to bridging the gap, as proven quantitatively in our
evaluation on real applications and datasets.

In profiling Spark, we observed that the Spark implemen-
tations consume a large amount of CPU resources compared
to OptSpark and Spark+MPI implementations. Further-
more, the Spark logs tell us that, for the Spark implementa-
tions, the time is being spent in algorithm time, running on
the executors. The OptSpark and Spark-+MPI implemen-
tations of PageRank show that the same algorithm can be
implemented using much fewer CPU cycles. Therefore, we
conclude that the Spark implementations are making ineffi-
cient use of CPU resources. At the same time, considering
OptSpark, we conclude that the performance of implementa-
tions based on Spark’s communication primitives is greatly
impeded by Spark’s broadcast and collect operations.

Despite its overheads, our Spark+MPI system provides
better performance than the alternatives for the applica-
tions and datasets considered in this paper. For algorithms
with fewer iterations, less work per iteration, or opportuni-
ties to amortize data structure build times in Spark, it may
be more efficient to stay in Spark to avoid the overheads of
Spark+MPI. We demonstrated this by measuring PR run-
times with different numbers of iterations. On the other
hand, finding larger chunks of work to do in MPI would
make it is even more advantageous to use our proposed sys-
tem because the Spark+MPI overheads could be amortized
further.

In addition to overhead, another potential drawback of the
Spark+MPI approach is that it must share memory with
Spark. In this paper, we statically partition the memory
between Spark and MPI, which is sufficient for these ap-
plications. However, to accommodate MPI and Spark ap-

plications with more diverse memory requirements, we are
considering for future work a mechanism to allow MPI to
borrow memory from Spark.

We will release Spark+MPI as open-source software.
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