
Memory-Efficient Parallel Computation of Tensor
and Matrix Products for Big Tensor Decomposition

Niranjay Ravindran∗, Nicholas D. Sidiropoulos∗, Shaden Smith†, and George Karypis†
∗ Dept. of Electrical and Computer Engineering † Dept. of Computer Science and Engineering

University of Minnesota, Minneapolis

Abstract— Low-rank tensor decomposition has many applica-
tions in signal processing and machine learning, and is becoming
increasingly important for analyzing big data. A significant
challenge is the computation of intermediate products which can
be much larger than the final result of the computation, or even
the original tensor. We propose a scheme that allows memory-
efficient in-place updates of intermediate matrices. Motivated
by recent advances in big tensor decomposition from multiple
compressed replicas, we also consider the related problem of
memory-efficient tensor compression. The resulting algorithms
can be parallelized, and can exploit but do not require sparsity.

I. INTRODUCTION

Tensors (or multi-way arrays) are data structures indexed by
three or more indices. They are a generalization of matrices
which have only two indices: a row index and a column index.
Many examples of real world data are stored in the form of
very large tensors, for example, the Never Ending Language
Learning (NELL) database [1] has dimensions 26 million × 26
million × 48 million. Many big tensors are also very sparse,
for instance, the NELL tensor has only 144 million non-zero
entries.

Tensor factorizations have already found many applications
in chemistry, signal processing, and machine learning, and
they are becoming more and more important for analyzing big
data. Parallel Factor Analysis (PARAFAC) [2] or Canonical
Decomposition (CANDECOMP) [3], referred to hereafter as
CP, synthesizes an I × J ×K three-way tensor X as the sum
of F outer products:

X =

F∑
f=1

af ◦ bf ◦ cf (1)

where ◦ denotes the vector outer product, af ◦bf ◦cf (i, j, k) =
a(i)b(j)c(k) for 1 ≤ i ≤ I, 1 ≤ j ≤ J and 1 ≤ k ≤ K
and af ∈ RI×1,bf ∈ RJ×1, cf ∈ RK×1. The smallest F
that allows synthesizing X this way is the rank of X. A
matrix of rank F can be synthesized as the sum of F rank
one matrices. Similarly, a rank F tensor can be synthesized
as the sum of F rank one tensors, af ◦ bf ◦ cf ∈ RI×J×K

for f = 1, . . . , F . Compared to other tensor decompositions,
the CP model is special because it can be interpreted as
rank decomposition, and because of its uniqueness properties.
Under certain conditions, the rank-one tensors af ◦bf ◦cf are

Work supported by NSF IIS-1247632. Authors can be reached at
ravi0022@umn.edu, nikos@umn.edu (contact author), shaden@cs.umn.edu,
karypis@cs.umn.edu.

unique [4]–[6]. That is, given X of rank F , there is only one
way to decompose it into F rank one tensors. This is important
in many applications where we are interested in unraveling the
latent factors that generate the observed data.

Least-squares fitting a rank F CP model to a tensor is
an NP-hard problem; but the method of alternating least
squares (ALS) usually yields good approximate solutions
in practice, approaching the Cramér-Rao bound in ‘well-
determined’ cases. While very useful in practice, this approach
presents several important but also interesting challenges in
the case of big tensors. For one, the size of intermediate
products can be much larger than the final result of the
computation, referred to as the intermediate data explosion
problem. Another bottleneck is that the entire tensor needs to
be accessed in each ALS iteration, requiring large amounts of
memory and incurring large data transport costs. Moreover, the
tensor data is accessed in different orders inside each iteration,
which makes efficient block caching of the tensor data for
fast memory access difficult (unless the tensor is replicated
multiple times in memory). Addressing these concerns is
critical in making big tensor decomposition practical. Further,
due to the large number of computations involved and possibly
distributed storage of the big tensor, it is desirable to formulate
scalable and parallel tensor decomposition algorithms.

In this work, we propose two improved algorithms. No
sparsity is required for either algorithm, although sparsity can
be exploited for memory and computational savings. The first
is a scheme that effectively allows in-place updates of the
factors in each ALS iteration with no intermediate memory
explosion, as well as reduced memory and complexity relative
to prior methods. Further, the algorithm has a consistent block
access pattern of the tensor data, which can be exploited for
efficient caching/pre-fetching of data. Finally, the algorithm
can be parallelized such that each parallel thread only requires
access to one portion of the big tensor, favoring a distributed
storage setting.

The above approach directly decomposes the big tensor and
requires accessing the entire tensor data multiple times, and
so may not be suited for very large tensors that do not fit
in memory. To address this, recent results indicate that ran-
domly compressing the big tensor into multiple small tensors,
independently decomposing each small tensor in parallel, and
finally merging the resulting decompositions, can identify the
correct decomposition of the big tensor and provide signifi-
cant memory and computational savings. The tensor data is

accessed only once during the compression stage, and further
operations are only performed on the smaller tensors. If the
big tensor is indeed of low rank, and the system parameters are
appropriately chosen, then its low rank decomposition is fully
recoverable from those of the smaller tensors. Moreover, each
of the smaller tensors can be decomposed in parallel without
requiring access to the big tensor data. This approach will
be referred to as PARACOMP (parallel randomly compressed
tensor decomposition) in the sequel.

While PARACOMP provides a very attractive alternative to
directly decomposing a big tensor, the actual compression of
the big tensor continues to pose a challenge. One approach
is to compute the value of each element of the compressed
tensor one at a time, which requires very little intermediate
memory and can exploit sparsity in the data, but has very high
computational complexity for dense data. Another approach
is to compress one mode of the big tensor at a time, which
greatly reduces the complexity of the operations, but requires
large amounts of intermediate memory. In fact, for sparse
tensors, the intermediate result after compressing one mode
is, in general, dense, and can occupy more memory than the
original tensor, even if the final compressed tensor is small.

To address these problems, we propose a new algorithm
for compressing big tensors via multiple mode products. This
algorithm achieves the same flop count as compressing the
tensor one mode at a time for dense tensors, and better flop
count than computing the value of the compressed tensor
one element at a time for sparse tensors, but with only
limited intermediate memory, typically smaller than the final
compressed tensor.

II. MEMORY EFFICIENT CP DECOMPOSITION

Let A,B and C be I×F , J×F and K×F matrices, whose
columns are comprised of {af}Ff=1 , {bf}Ff=1 and {cf}Ff=1

respectively. Let X(:, :, k) denote the kth I × J matrix “slice”
of X.

Let XT
(3) denote the IJ × K matrix whose kth column is

vec(X(:, :, k)). Similarly define the JK × I matrix XT
(1) and

the IK×J matrix XT
(2). Then, there are three equivalent ways

of expressing the decomposition in (1) as

XT
(1) = (C⊙B)AT (2)

XT
(2) = (C⊙A)BT (3)

XT
(3) = (B⊙A)CT (4)

where ⊙ represents the Khatri-Rao product (note the trans-
poses in the definitions and expressions above). This can also
be written as:

vec(X) = (C⊙B⊙A)1 (5)

using the vectorization property of the Khatri-Rao product. In
practice, due to the presence of noise, or in order to fit a higher
rank tensor to a lower rank model, we seek an approximate
solution to the above decomposition, in the least squares sense

min
A,B,C

||X(1) − (C⊙B)AT ||2F . (6)

using the represenation (2). The above is an NP-hard problem
in general, but fixing A, B and solving for C is only a linear
least-squares problem which has a closed-form solution for C:

C = X(3)(B⊙A)(BTB ∗ATA)† (7)

where ∗ stands for the Hadamard (element-wise) product and
† denotes the pseudo-inverse of a matrix. Rearranging (6) to
use the forms (2) and (3) can similarly provide solutions for
updating A and B respectively, given that the other two factors
are fixed:

A = X(1)(C⊙B)(CTC ∗BTB)† (8)

B = X(2)(C⊙A)(CTC ∗ATA)† (9)

Iterating the above steps yields an alternating least-squares
(ALS) algorithm to fit a rank-F CP model to the tensor X.

The above algorithm, while useful in practice, presents
several challenges for the computations (7), (8) and (9). For
one, the computation of the intermediate Khatri-Rao products,
for example, the IJ ×F matrix (B⊙A), can be much larger
than the final result of the computation (7), and may require
large amounts of intermediate memory. This is referred to
as intermediate data explosion. Another drawback is that the
entire tensor data X needs to be accessed for each of these
computations in each ALS iteration, requiring large amounts
of memory and incurring large data transport costs. Moreover,
the access pattern of the tensor data is different for (7), (8)
and (9), making efficient block caching of the tensor data for
fast memory access difficult (unless the tensor is repeated
three times in memory, one for each of the matricizations
X(1),X(2) and X(3)). Addressing these concerns is critical
in making big tensor decomposition practical. Furthermore,
due to the large number of computations involved and possibly
distributed storage of the big tensor, it is desirable to formulate
the algorithm so it is easily and efficiently parallelizable.

Without memory-efficient algorithms, the direct computa-
tion of, say, X(1)(C⊙B), requires O(JKF) memory to store
C⊙B, in addition to O(NNZ) memory to store the tensor data,
where NNZ is the number of non-zero elements in the tensor
X. Further, JKF flops are required to compute (C⊙B), and
JKF +2F NNZ flops to compute its product with X(1). This
step is the bottleneck in the computations (7)-(9). Note that the
pseudo-inverse can be computed at relatively less complexity
since CTC ∗BTB is an F × F matrix.

In [7], [8], a variety of tensor analysis algorithms exploiting
sparsity in the data to reduce memory storage requirements
are presented. The Tensor Toolbox [9] computes X(1)(C⊙B)
with 3F NNZ flops using NNZ intermediate memory (on top
of that required to store the tensor) [7]. The algorithm avoids
intermediate data explosion by ‘accumulating’ tensor-matrix
operations, but it does not provision for efficient parallelization
(the accumulation step must be performed serially). In [10], a
parallel algorithm that computes X(1)(C⊙B) with 5F NNZ
flops using O(max(J +NNZ,K+NNZ)) intermediate mem-
ory is presented. The algorithm in [10] admits MapReduce
implementation.

Algorithm 1 Computing X(1)(C⊙B)

Input: X ∈ RI×J×K ,B ∈ RJ×F ,C ∈ RK×F

Output: M1 ← X(1)(C⊙B) ∈ RI×F

1: M1 ← 0
2: for k = 1, . . . ,K do
3: M1 ←M1 +X(:, :, k)B diag(C(k, :))
4: end for

Algorithm 2 Computing X(2)(C⊙A)

Input: X ∈ RI×J×K ,A ∈ RI×F ,C ∈ RK×F

Output: M2 ← X(2)(C⊙A) ∈ RJ×F

1: M2 ← 0
2: for k = 1, . . . ,K do
3: M2 ←M2 +X(:, :, k)Adiag(C(k, :))
4: end for

In this work, we present an algorithm for the computation
of X(1)(C ⊙ B) which requires only O(NNZ) intermediate
memory, that is, the updates of A,B and C can be effectively
performed in place. This is summarized in Algorithm 1.
Further, the algorithm has a consistent block access pattern of
the tensor data, which can be used for efficient caching/pre-
fetching, and offers complexity savings relative to [10], as
quantified next.

Let Ik be the number of non-empty rows in the k-th I × J
“slice” of the tensor, X(:, :, k). Similarly, let Jk be the number
of non-empty columns in X(:, :, k). Define:

NNZ1 =

K∑
k=1

Ik (10)

NNZ2 =
K∑

k=1

Jk (11)

where NNZ1 and NNZ2 are the total number of non-empty
rows and columns in the tensor X. Algorithm 1 computes
X(1)(C ⊙ B) in F NNZ1 + F NNZ2 + 2F NNZ flops,
assuming that empty rows and columns of X(:, :, k) can be
identified offline and skipped during the matrix multiplication
and update of M1 operations. To see this, note that we only
need to scale by diag(C(k, :)) those rows of B corresponding
to nonempty columns of X(:, :, k), and this can be done using
FJk flops, for a total of FNNZ2. Next, the multiplications X(:
, :, k)B diag(C(k, :)) can be carried out for all k at 2F NNZ
flops (counting additions and multiplications). Finally, only
rows of M1 corresponding to nonzero rows of X(:, :, k)

Algorithm 3 Computing X(3)(B⊙A)

Input: X ∈ RI×J×K ,A ∈ RI×F ,B ∈ RJ×F

Output: M3 ← X(3)(B⊙A) ∈ RK×F

1: for k = 1, . . . ,K do
2: M3(k, :)← 1T (A ∗ (X(:, :, k)B))
3: end for

need to be updated, and the cost of each row update is F ,
since X(:, :, k)B diag(C(k, :)) has F columns. Hence the
total M1 row updates cost is FNNZ1 flops, for an overall
F NNZ1 +F NNZ2 +2F NNZ flops. This offers complexity
savings relative to [10] since NNZ > NNZ1,NNZ2.

Algorithm 2 summarizes the method for computation of
X(2)(C ⊙ A), which has the same complexity and storage
requirements as Algorithm 1, while still maintaining the same
pattern of accessing the tensor data in the form of I × J
“slices”. Algorithm 3 computes X(3)(B ⊙ A), but differs
from Algorithms 1 and 2 in order to maintain the same
access pattern of the tensor data (with similar complexity and
storage). Hence, there is no need to re-order the tensor between
each computation stage or store multiple copies of the tensor.

We do not discuss parallel implementations of Algorithms
1, 2, and 3 in detail in this work, but point out that the loops
in Step 2 can be parallelized across K threads where each
thread only requires access to an I×J slice of the tensor. This
favors a distributed storage structure for the tensor data. The
thread synchronization requirements are also different between
Algorithms 1, 2 and Algorithm 3, since in Algorithm 3 only
F elements of a single column of the matrix M3 will need to
be updated (independently) by each thread. The procedure in
Algorithm 3 can be used to compute the results in Algorithms
1 and 2, and vice versa, although this may not preserve the
same access pattern of the tensor in terms of I × J slices.
Efficient parallel implementations of the above algorithms are
currently being explored in ongoing work.

III. MEMORY EFFICIENT COMPUTATION OF TENSOR
MODE PRODUCTS

A critical disadvantage of directly using ALS for CP de-
composition of a big tensor is that there is still a requirement
of repeatedly accessing the entire tensor data multiple times
for each iteration. While the parallelization suggested for
Algorithms 1, 2 and 3 can split the tensor data over multiple
parallel threads, thereby mitigating the data access cost, this
cost may still dominate for very large tensors which may not
fit in random access or other high performance memory.

Several methods have been proposed to alleviate the need
to store the entire tensor in high-performance memory. Biased
random sampling is used in [11], and is shown to work well
for sparse tensors, albeit without identifiability guarantees. In
[12], the big tensor is randomly compressed into a smaller
tensor. If the big tensor admits a low-rank decomposition
with sparse latent factors, the random sampling guarantees
identifiability of the low-rank decomposition of the big tensor
from that of the smaller tensor. However, this guarantee may
not hold if the latent factors are not sparse. In [13], a method
of randomly compressing the big tensor into multiple small
tensors (PARACOMP) is proposed, where each small tensor
is independently decomposed, and the decompositions are
related through a master linear equation. The tensor data is
accessed only once during the compression stage, and further
operations are only performed on the smaller tensors. If the
big tensor is indeed of low rank, and the system parameters are

appropriately chosen, then its low rank decomposition is fully
recoverable from those of the smaller tensors. PARACOMP
offers guaranteed identifiability, natural parallelization, and
overall complexity and memory savings of order IJ

F . Sparsity
is not required, but can be exploited in PARACOMP. Given

Fig. 1. Compressing X (I×J×K) to Yp (Lp×Mp×Np) by multiplying
(every slab of) X from the I-mode with UT

p , from the J-mode with VT
p ,

and from the K-mode with WT
p .

compression matrices Up ∈ RI×Lp ,Vp ∈ RJ×Mp and Wp ∈
RK×Np , the compressed tensor Yp ∈ RLp×Mp×Np computed
as Yp(l,m, n) =

I∑
i=1

J∑
j=1

K∑
k=1

Up(l, i)Vp(m, j)Wp(n, k)X(i, j, k) (12)

for l ∈ {1, . . . , Lp}, m ∈ {1, . . . ,Mp} and n ∈ {1, . . . , Np}.
The compression operation in (12) can be thought of as
multiplying (and compressing) the big tensor X by UT

p along
the first mode, VT

p along the second mode, and WT
p along

the third mode. This corresponds to compressing each of the
dimensions of X independently, i.e., reducing the dimension I
to Lp, J to Mp and K to Np. The result is a smaller “cube” of
dimensions Lp×Mp×Np. This process is depicted in Figure 1.
This computation is repeated for p = 1, . . . , P , for some P and

Fig. 2. The PARACOMP fork-join architecture. The fork creates P ran-

domly compressed reduced-size ‘replicas’
{
Yp

}P

p=1
, obtained by applying

(Up,Vp,Wp) to X, as in Fig. 1. Each Yp is independently factored.

The join collects the estimated mode loading sub-matrices
(
Ãp, B̃p, C̃p

)
,

anchors them all to a common permutation and scaling, and solves a linear
least squares problem to estimate (A,B,C).

L1, . . . , LP << I,M1, . . . ,MP << J and N1, . . . , NP <<
K, to form P compressed tensors Y1, . . . ,YP . This operation
can be performed in parallel over P threads. Each of the P

compressed tensors Y1, . . . ,YP is independently decomposed
into CP factors denoted by Ãp, B̃p and C̃p with a rank of F ,
for p = 1, . . . , P , using, for example, the ALS algorithm as
described in Section II. Finally, the F factors are “joined” to
compute A,B and C, the rank F decomposition of the big
tensor X. This process is depicted in Figure 2.

PARACOMP is particularly attractive due to its natural
parallel structure and the fact that the big tensor data does not
need to be repeatedly accessed for the decomposition. The
initial compression stage, however, can be a bottleneck. On
the bright side, (12) can be performed “in place”, requires
only bounded intermediate memory, and it can exploit sparsity
by summing only over the non-zero elements of X. On the
other hand, complexity is O(LMNIJK) for a dense tensor,
and O(LMN(NNZ)) for a sparse tensor. The main issue
with (12), however, is that it features a terrible memory
access pattern which can really bog down computations. An
alternative computation schedule comprises three steps:

T1(l, j, k) =

I∑
i=1

U(l, i)X(i, j, k),

∀l ∈ {1, . . . , Lp} , j ∈ {1, . . . , J} , k ∈ {1, . . . ,K} (13)

T2(l,m, k) =
J∑

j=1

V(m, j)T1(l, j, k),

∀l ∈ {1, . . . , Lp} ,m ∈ {1, . . . ,Mp} , k ∈ {1, . . . ,K} (14)

Y(l,m, n) =
K∑

k=1

W(n, k)T2(l,m, k),

∀l ∈ {1, . . . , Lp} ,m ∈ {1, . . . ,Mp} , n ∈ {1, . . . , Np} (15)

which has only O(LIJK +MLJK +NLMK) complexity
for a dense tensor, as opposed to O(LMNIJK). This cor-
responds to compressing the I mode first, followed by the J
mode, and finally the K mode. The reduction in complexity is
achieved by storing intermediate results in (12) using tensors
T1 and T2, instead of computing them multiple times.

The ordering of the multiplications can be changed in order
to minimize the overall complexity. For three modes, there
are 6 different orderings, each potentially yielding a different
computational complexity. However, for I ≤ J ≤ K with I

L =
J
M = K

N , it can be shown that it is almost always preferable
to perform the multiplications in the order shown in (13)-(15)
for dense tensors, i.e., compress the smallest mode first, and
proceed in ascending order of the size of the modes.

However, despite the substantial computational savings
compared to (12), the computations (13)-(15) require very
large amounts of intermediate memory. Further, for a sparse
tensor X, the first mode compression can be performed for
only the non-zero elements of the tensor – thus exploiting
sparsity – but the intermediate tensors T1 and T2 are, in
general, dense, potentially requiring even more memory than
the original tensor! The implementation in (12) fully exploits
sparsity and does not require any intermediate memory, and
as observed in [13], there appears to be a tradeoff between
complexity and memory savings, with and without sparsity.

In Algorithm 4, we propose a scheme that achieves the
same flop count as (13)-(15) for dense tensors, and better flop
count compared to (12) for sparse tensors, but requires only
limited intermediate memory in the form of T′

1 ∈ RL×B and
T′

2 ∈ RL×M , for any choice of B ≤ J . For example, B = 1
results in maximum memory savings – but in practice, setting
B to a higher value to ensure maximum cache utilization
may be a preferable option. The choice of B does not affect
the computational complexity. For most processing systems,
it should be possible to make B small enough such that
the intermediate matrices are smaller than the final result Y
for small enough B, thus addressing the intermediate data
explosion problem.

Algorithm 4 Compression of X into Yp

Input: X ∈ RI×J×K ,Up ∈ RI×Lp ,Vp ∈ RJ×Mp ,Wp ∈
RK×Np , Block size B
Output: Yp ∈ RLp×Mp×Np

1: for k = 1, . . . ,K do
2: T′

2 ← 0
3: for b = 1, B + 1, 2B + 1, 3B + 1, . . . , J do
4: T′

1 ← UT
p X(:, b : (b+B − 1), k)

5: T′
2 ← T′

2 +T′
1Vp(b : (b+B − 1), :)

6: end for
7: for n = 1, . . . , Np do
8: Yp(:, :, n)← Yp(:, :, n) +W (n, k)T′

2

9: end for
10: end for

This algorithm can be generalized to tensors with more than
3 modes as follows: the computations in steps 4 and 5 can
be used to compress a pair of modes at a time, while the
computation in step 8 can be used for the last mode in the
case of an odd number of modes. The main result that the
intermediate memory required is typically less than the final
result will continue to hold.

Next, it is important to consider the exploitation of spar-
sity. Clearly, the matrix multiplication in Step 4 can fully
exploit sparsity in the tensor data. Further, if we assume
that the empty columns of T1 can be identified, then these
columns need not participate while updating T2 in Step 5.
Hence, the overall complexity for sparse data is O(L(NNZ)+
LM(NNZ2)+LMNK. Note that (12) has a higher complexity
of O(LMN(NNZ)), since NNZ > K,NNZ2. Hence, the
above algorithm exploits sparsity better than the method of
looping over all the non-zero elements of X using (12).
However, despite this, it is clear sparsity is only fully exploited
while compressing the first mode. Only fully empty columns
after compressing the first mode can be exploited while
compressing the second mode. Hence it is tempting to believe
that further optimizations of Algorithm 4 for sparse data are
possible, which is currently the subject of ongoing work.

Finally, we note that there is more than one way of
parallelizing Algorithm 4. The straightforward method of
parallelizing the P compression steps over P threads requires

that each thread accesses the entire tensor once. However,
if the parallelization is done over the for loop in Step 1 in
Algorithm 4, i.e., over as many as K threads, where each
thread handles p = 1, . . . , P , only a “slice” of the tensor data,
X(:, :, k), is required at each thread. Similar to algorithms 1, 2,
and 3, this architecture favors situations where the tensor data
is stored in a distributed fashion, with only a portion of the data
locally available to each thread. Analyzing the communication
overhead associated with various parallel implementations of
Algorithm 4 will be explored in other work.

IV. CONCLUSIONS

New memory-efficient algorithms for streamlining the com-
putation of intermediate products appearing in tensor decom-
position using ALS and PARACOMP were proposed. These
are often the bottleneck of the entire computation, especially
for big tensors. The new algorithms have favorable memory
access patterns without requiring big tensor data replication.
They also feature reduced computational complexity relative
to the prior art, in many cases of practical interest. Another no-
table feature is that they are naturally amenable to paralleliza-
tion. Performance optimization for specific high-performance
computing architectures is currently being explored.

REFERENCES

[1] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr., and
T. Mitchell, “Toward an Architecture for Never-Ending Language Learn-
ing,” in AAAI, 2010.

[2] R. Harshman, “Foundations of the PARAFAC procedure: Models and
conditions for an ‘explanatory’ multimodal factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[3] J. Carroll and J. Chang, “Analysis of individual differences in mul-
tidimensional scaling via an N-way generalization of Eckart-Young
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[4] J. Kruskal, “Three-way arrays: rank and uniqueness of trilinear de-
compositions, with application to arithmetic complexity and statistics,”
Linear algebra and its Applications, vol. 18, no. 2, pp. 95–138, 1977.

[5] N. Sidiropoulos and R. Bro, “On the uniqueness of multilinear decom-
position of N-way arrays,” Journal of Chemometrics, vol. 14, no. 3, pp.
229–239, 2000.

[6] A. Stegeman and N. Sidiropoulos, “On Kruskal’s uniqueness condition
for the Candecomp/Parafac decomposition,” Linear Algebra and its
Applications, vol. 420, no. 2, pp. 540–552, 2007.

[7] B. Bader and T. Kolda, “Efficient MATLAB Computations
with Sparse and Factored Tensors,” SIAM Journal on Scientific
Computing, vol. 30, no. 1, pp. 205–231, 2008. [Online]. Available:
http://dx.doi.org/10.1137/060676489

[8] T. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect
data mining,” in Proc. IEEE ICDM 2008, pp. 363–372.

[9] B. W. Bader, T. G. Kolda, et al., “Matlab tensor toolbox
version 2.5,” Available online, January 2012. [Online]. Available:
http://www.sandia.gov/ tgkolda/TensorToolbox/

[10] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
scaling tensor analysis up by 100 times-algorithms and discoveries,” in
Proc. ACM SIGKDD, 2012, pp. 316–324.

[11] E. Papalexakis, C. Faloutsos, and N. Sidiropoulos, “Parcube: Sparse
parallelizable tensor decompositions,” in Proc. European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases 2012 (ECML-PKDD). Springer, 2012, pp. 521–536.

[12] N. D. Sidiropoulos and A. Kyrillidis, “Multi-way compressed sensing
for sparse low-rank tensors,” IEEE Signal Processing Letters, vol. 19,
no. 11, pp. 757–760, 2012.

[13] N. Sidiropoulos, E. Papalexakis, and C. Faloutsos, “PArallel RAndomly
COMPressed Cubes: A Scalable Distributed Architecture for Big Tensor
Decomposition,” IEEE Signal Processing Magazine (Special Issue on
Signal Processing for Big Data), pp. 57–70, Sep. 2014.

