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Abstract—Modeling multi-way data can be accomplished
using tensors, which are data structures indexed along three
or more dimensions. Tensors are increasingly used to analyze
extremely large and sparse multi-way datasets in life sciences,
engineering, and business. The canonical polyadic decomposi-
tion (CPD) is a popular tensor factorization for discovering
latent features and is most commonly found via the method of
alternating least squares (CPD-ALS). The computational time
and memory required to compute CPD limits the size and
dimensionality of the tensors that can be solved on a typical
workstation, making distributed solution approaches the only
viable option. Most methods for distributed-memory systems
have focused on distributing the tensor in a coarse-grained,
one-dimensional fashion that prohibitively requires the dense
matrix factors to be fully replicated on each node. Recent work
overcomes this limitation by using a fine-grained decomposi-
tion of the tensor nonzeros, at the cost of computationally
expensive hypergraph partitioning. To that effect, we present
a medium-grained decomposition that avoids complete factor
replication and communication, while eliminating the need for
expensive pre-processing steps. We use a hybrid MPI+OpenMP
implementation that exploits multi-core architectures with a
low memory footprint. We theoretically analyze the scalability
of the coarse-, medium-, and fine-grained decompositions and
experimentally compare them across a variety of datasets.
Experiments show that the medium-grained decomposition
reduces communication volume by 36-90% compared to the
coarse-grained decomposition, is 41-76x faster than a state-of-
the-art MPI code, and is 1.5-5.0x faster than the fine-grained
decomposition with 1024 cores.

Keywords-Sparse tensor, distributed, PARAFAC, CPD, par-
allel, medium-grained

I. INTRODUCTION

Multi-way data arises in many of today’s applications. A

natural representation of this data is via a tensor, which is

the extension of a matrix to three or more dimensions (called

modes). For example, we can model product reviews as user-
item-word triplets [1], the Never-Ending Language Learning

(NELL) knowledge database as noun-verb-noun triplets [2],

or electronic health records as patient-procedure-diagnosis
triplets [3]. These tensors have very long modes and are very

sparse (e.g., NELL has a density of 9×10−13).

The recent popularity of tensors has led to an increased

use of tensor factorization, a powerful tool for discovering

the latent features in multi-way data. The most popular fac-

torization is the canonical polyadic decomposition (CPD), a

rank decomposition that can be seen as a higher-dimensional

generalization of the singular value decomposition. The CPD

represents the tensor via a matrix of latent features for each

mode. We refer to these matrices as factors. The columns of

the factors often represent some real-world interpretation of

the dataset, such as film genre, word category, or phenotype.

The CPD has been used with great success to perform tasks

such as identifying word synonyms [4], performing webpage

queries [5], and generating a list of recommendations [6].
Computing the CPD is a non-convex optimization prob-

lem. The most common method is using the method of

alternating least squares (CPD-ALS), which solves the non-

convex problem by turning each iteration into a sequence

of convex least squares solutions. The computational time

and memory required to compute the CPD limits the size

and dimensionality of the tensors that can be solved on a

typical workstation, making distributed solution approaches

the only viable option.
Two systems for distributed tensor factorization are

DFACTO [7] and SALS [8]. They partition the input tensor

in a coarse-grained fashion, and require the dense matrix

factors to be present on each node. A drawback to both

methods is that they are not memory scalable because the

matrix factors can consume more memory than the original

sparse tensor and each node must communicate those factors

in their entirety, each iteration. HYPERTENSOR [9] is a

recent work that overcomes this limitation by using a fine-

grained decomposition of the tensor’s nonzeros. The fine-

grained decomposition reduces communication volume by

using hypergraph partitioning, which often takes signifi-

cantly more time than actually computing the factorization.
To address these limitations, we present a distributed

CPD-ALS algorithm that is scalable in terms of computation

and memory. Scalability is achieved by performing an m-

dimensional decomposition of the tensor, where m is the

number of modes, and one-dimensional decompositions of

the factor matrices. Our distributed-memory CPD-ALS im-

plementation, called DMS, is has two levels of parallelism:

MPI provides node-level parallelism and OpenMP provides

multi-core parallelism within each computing node. Our

contributions are:

1) A CPD-ALS algorithm for distributed-memory sys-

tems that uses an m-dimensional decomposition of the

tensor and one-dimensional decompositions of the fac-

tors to achieve computational and memory scalability.

2) A theoretical analysis of the medium-grained decom-

position, which shows that it reduces the communi-
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cation overhead from O(IF ) to O
(
IF/ m

√
p
)
, where

IF is the size of the output and p is the number of

cores.

3) An extensive set of experiments across various datasets

on up to 512 cores. DMS reduces communication

volume by 36% to 90%, is 20× to 60× faster than

DFACTO, and is 1.7× to 5.0× faster than our own

fine-grained implementation.

The rest of this paper is organized as follows. Section II

introduces notation and provides a background on the CPD

and ALS. Section III highlights existing approaches for dis-

tributed tensor factorization. We describe our tensor decom-

position and distributed CPD-ALS algorithm in Section IV,

and detail efficient algorithms for finding a decomposition

in Section V. Section VI details our experimental setup

and provide a discussion of the results. Finally, Section VII

provides some concluding remarks.

II. TENSOR BACKGROUND

A. Tensor Notation

We denote vectors using bold lowercase letters (λ), ma-

trices using bold capital letters (A), and tensors using bold

capital calligraphic letters (X ). The element in coordinate

(i, j, k) of X is X (i, j, k). Unless specified, the sparse

tensor X is of dimension I×J×K and has nnz(X ) nonzero

elements. A colon in the place of an index represents all

members of that mode. For example, A(:, f) is column f
of the matrix A. Fibers are the generalization of matrix

rows and columns and are the result of holding two indices

constant. A slice of a tensor is the result of holding one

index constant and the result is a matrix.

A tensor can be unfolded, or matricized, into a matrix

along any of its modes. In the mode-n matricization, the

mode-n fibers form the columns of the resulting matrix.

The mode-n unfolding of X is denoted as X(n). If X is

of dimension I×J×K, then X(1) is of dimension I×JK.

Two essential matrix operations used in the CPD are

the Hadamard product and the Khatri-Rao product. The

Hadamard product, denoted A ∗ B, is the element-wise

multiplication of A and B. The Khatri-Rao product, denoted

A � B, is the column-wise Kronecker product. If A is I×J
and B is M×J , then A � B is IM×J .

B. Canonical Polyadic Decomposition

The CPD is a generalization of the singular value de-

composition (SVD) to tensors. In the SVD, a matrix M is

factored into the summation of F rank-one matrices, where

F can either be the rank of M or some smaller integer if a

low-rank approximation is desired. CPD extends this concept

to factor a tensor into the summation of F rank-one tensors.

We are almost always interested in F � max{I, J,K}
for sparse tensors. In this work we treat F as a small

constant on the order of 10 or 100. A rank-F CPD produces

factors A ∈ R
I×F , B ∈ R

J×F , and C ∈ R
K×F . A, B,

Algorithm 1 CPD-ALS

1: while not converged do
2: Aᵀ = (CᵀC ∗ BᵀB)−1

(
X(1)(C � B)

)ᵀ
3: Normalize columns of A
4: Bᵀ = (CᵀC ∗ AᵀA)−1

(
X(2)(C � A)

)ᵀ
5: Normalize columns of B
6: Cᵀ = (BᵀB ∗ AᵀA)−1

(
X(3)(B � A)

)ᵀ
7: Normalize columns of C and store in λ
8: end while

and C are typically dense regardless of the sparsity of X .

Unlike the SVD, the CPD does not require orthogonality

in the columns of the factors. We output the factors with

normalized columns and λ ∈ R
F , a vector for weighting the

rank-one components. Using this form we can reconstruct X
via

X (i, j, k) ≈
F∑

f=1

λ(f)A(i, f)B(j, f)C(k, f).

Besides CPD there are other ways to compute factoriza-

tions of tensors such as the Tucker Decomposition [10].

However, the work in this paper focuses only on CPD and

any reference to tensor factorization will indicate a CPD

tensor factorization.

C. CPD with Alternating Least Squares

CPD-ALS is the most common algorithm for computing

the CPD. The non-convex problem is transformed into a

convex one for each factor and iterate until convergence.

During each iteration, B and C are fixed and we solve the

unconstrained least squares optimization problem

minimize
A

1

2
||X(1) − A(C � B)ᵀ||2F

with solution

Aᵀ = (CᵀC ∗ BᵀB)−1
(
X(1)(C � B)

)ᵀ
We first find Â = X(1)(C � B), followed by the Gram

matrix M = (CᵀC ∗ BᵀB). M is an F×F positive semi-

definite matrix and so we use its Cholesky factorization

instead of explicitly computing its inverse. B and C are

then solved for similarly. The factors are normalized each

iteration and λ stores the F column norms. The full CPD-

ALS steps are shown in Algorithm 1.

We denote Â = X(1)(C�B) as the matricized tensor times
Khatri-Rao product (MTTKRP). Explicitly forming C � B
and performing the matrix multiplication requires orders of

magnitude more memory than the original sparse tensor.

Instead, we exploit the block structure of the Khatri-Rao

product to perform the multiplication in place. The fastest

MTTKRP algorithms can execute an MTTKRP operation

in O (F · nnz(X )) floating-point operations (FLOPs), with

903



a leading constant dependent on the sparsity pattern of the

tensor [7], [11], [12]. Entry Â(i, f) is given by

Â(i, f) =
∑

X (i,:,:)

X (i, j, k)B(j, f)C(k, f). (1)

Equation (1) shows us two important properties of the

MTTKRP operation. First, nonzeros in slice X (i, :, :) will

only contribute to row Â(i, :). Second, the j and k indices

in slice X (i, :, :) determine which rows of B and C must be

accessed during the multiplication.

CPD-ALS iterates until convergence. The residual of a

tensor X and its CPD approximation Z is√
〈X ,X 〉+ 〈Z,Z〉 − 2〈X ,Z〉.

〈X ,X 〉 = ||X ||2F is a direct extension of the matrix

Frobenius norm, i.e., the sum-of-squares of all nonzero

elements. X is also a constant input and thus its norm can

be pre-computed. The norm of a factored tensor is

||Z||2F = λᵀ (CᵀC ∗ BᵀB ∗ AᵀA)λ.

Fortunately, each AᵀA product is computed during the CPD-

ALS iteration and the results can be cached and reused in

just O(F 2) space. The complexity of computing the residual

is bounded by the inner product 〈X ,Z〉 which is given by

F∑
f=1

λ(f)

⎛
⎝ ∑

nnz(X )

X (i, j, k)A(i, f)B(j, f)C(k, f)

⎞
⎠ . (2)

The cost of Equation (2) is 4F · nnz(X ) FLOPs, which

is more expensive than an entire MTTKRP operation. In

Section IV-B6 we present a method of reusing MTTKRP

operation results to reduce the cost to 2FI .

All of the above discussion can be generalized to tensors

with more than three modes. For more information on

tensors and their factorizations, we direct the reader to the

excellent survey by Kolda and Bader [13].

III. RELATED WORK

Distributed CPD algorithms such as DFACTO [7] and

SALS [8] use coarse-grained decompositions in which

independent one-dimensional (1D) decompositions are used

for each tensor mode. Processes own a set of contiguous

slices for each mode and are responsible for the corre-

sponding factor rows. Figure 1 is an illustration of this

decomposition scheme. An advantage of this scheme is the

simplicity of performing MTTKRP operations. Each process

owns all of the nonzeros that contribute to its owned output

and thus the only communication required is exchanging

updated factor rows after each iteration. Independent 1D

decompositions can be interpreted as a task decomposition

on the problem output, often called the owner-computes rule.

A limitation of these coarse-grained methods is that by

owning slices in each mode of the tensor, processes own

nonzeros that can span the complete modes of X . As a

Figure 1: A coarse-grained decomposition of X . Slices

owned by a single process are shaded.

result, from Equation (1) we can see that processes will

require access to the factors in their entirety over the

course of the MTTKRP operations during an ALS iteration.

The memory footprint of all factors can rival that of the

entire tensor when the input is very sparse. Thus, memory

consumption is not scalable and since updated factors must

be communicated, communication is also not scalable.

Adding constraints such as non-negativity or sparsity in

the latent factors is also an interest to the tensor community.

A distributed non-negative CPD algorithm for dense tensors

was introduced in [14]. A coarse-grained decomposition was

used on the tensor and factors. A generalized framework

for constrained CPD that uses the Alternating Direction

Method of Multipliers (ADMM) was presented in [15].

Parallelism is extracted by performing a 2D decomposition

on the matricized tensor and a row distribution of the factors.

Neither of these two methods for parallel constrained tensor

factorization were explicitly designed for sparse tensors and

thus the storage and communication of full factors is not

considered a limitation.

Recently, a new CPD-ALS algorithm named HYPER-

TENSOR was presented in [9]. HYPERTENSOR uses a fine-
grained decomposition over X in which nonzeros are indi-

vidually assigned to processes. Several methods of comput-

ing such a decomposition are presented, with the most suc-

cessful relying on hypergraph partitioning. HYPERTENSOR

maps X to a hypergraph with nnz(X ) vertices and I+J+K
hyperedges. The vertex representing nonzero X (i, j, k) is

connected to hyperedges i, j, and k. The experiments

presented in [9] show that a balanced partitioning of the

hypergraph leads to a load-balanced computation with low

communication volume.

SPLATT [11] is a software toolkit for parallel sparse

tensor factorization on shared-memory systems. It uses

a compressed, fiber-centric data structure for the tensor

called compressed sparse fiber (CSF). The CSF data struc-

ture allows SPLATT to perform operation-efficient, multi-

threaded MTTKRP operations using a single tensor repre-

sentation [16]. The MTTKRP algorithm used in SPLATT

computes whole rows of Â at a time by processing all of
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the fibers in a single slice:

Â(i, :)←
J∑

j=1

(
B(j, :) ∗

K∑
k=1

X (i, j, k)C(k, :)

)
.

Factoring out the contributions of B allows SPLATT to

use fewer FLOPs than other algorithms that operate on

individual nonzeros.

IV. MEDIUM-GRAINED CPD-ALS

In order to address the high memory and communi-

cation requirements of the coarse-grained decomposition

while at the same time eliminate the need to perform the

expensive pre-processing step associated with hypergraph

partitioning, we developed an approach that uses a medium-

grained decomposition. Like coarse- and fine-grained meth-

ods, medium-grained have roots in the sparse matrix com-

munity [17]–[19]. The medium-grained decomposition uses

an m-mode decomposition over the tensor and related 1D

decompositions on the factor matrices. The medium-grained

CPD-ALS algorithm is parallelized at the node-level using a

message passing model and exploits multi-core architectures

as well with thread-level parallelism on each node.

In order to simplify the presentation, this section considers

only three mode tensors and the generalization of the algo-

rithms to higher-order tensors is discussed in Section IV-C.

A. Data Distribution Scheme

Assume that there are p = q×r×s processing elements

available. We form a 3D decomposition of X by partitioning

its three modes into q, r, and s chunks, respectively. The

intersections of these partitions form a total of p partitions

arranged in a q×r×s grid. We denote X (x,y,z) as the

partition of X with coordinate (x, y, z), and p(x,y,z) as the

process that owns X (x,y,z). We refer to a group processes

which share a coordinate as a layer. For example, p(i,:,:) is

a layer of r×s processes along the first mode and p(:,j,:) is

layer of q×s processes along the second mode.

In our implementation, each process stores its subtensor in

the CSF data structure. This allows us to use the operation-

efficient MTTKRP algorithm included in SPLATT to extract

parallelism on shared-memory architectures.

We use the 3D decomposition of X to induce partitionings

of the rows of A, B, and C. The rows of A are divided

into chunks A1, . . . ,Aq which have boundaries aligned with

the q partitions of the first mode of X . The rows in Ai

are collectively owned by all processes in layer p(i,:,:). The

rows of B and C are similarly divided into B1, . . . ,Br and

C1, . . . ,Cs, respectively. This decomposition is illustrated

in Figure 2a.

We further partition the rows of each chunk of A into

r×s groups such that each process in layer p(i,:,:) owns

a subset of the rows of Ai. We note that the partitioning

need not assign a contiguous set of rows to a process and a

process is not required to be assigned any rows. The output

of the MTTKRP operation, Â, has the same distribution as

A. Process pi owns the same rows of Âi as it does Ai.

The process is repeated for B and C similarly. We relabel

the slices of X in order to make the rows owned by each

process contiguous. This is illustrated in Figure 2c.
In subsequent discussions we will refer to process-level

partitions of A in two ways: Api refers to the chunk of A
owned by process pi, and A(x,y,z) refers to the chunk of A
owned by process with coordinate (x, y, z). The coordinate

form will simplify discussion during the MTTKRP operation

that relies on the 3D decomposition.

B. Distributed CPD-ALS
We will now detail each step of a CPD-ALS iteration

using our 3D decomposition. For brevity we only discuss

the computations used for the first mode. The other tensor

modes are computed identically.
1) Distributed MTTKRP Operations: Process p(x,y,z)

performs an MTTKRP operation with X (x,y,z). Any nonze-

ros in X (x,y,z) whose mode-1 indices are non-local will

produce partial products that must be sent to other processes

in the layer p(x,:,:). Likewise, p(x,y,z) will receive partial

products from any processes in layer p(x,:,:) which output

to rows in Â(x,y,z). The received partial products are then

aggregated, resulting in the completed Â(x,y,z).
2) Cholesky Factorization: BᵀB and CᵀC are F×F

matrices that comfortably fit in the memory of each process.

Assume BᵀB and CᵀC are already resident in each process’

memory. All processes redundantly compute the Cholesky

factorization of M = (CᵀC ∗ BᵀB) in O(F 3) time, which

is a negligible overhead for the low-rank problems that we

are interested in. We perform the forward and backward sub-

stitutions in block form to exploit our row-wise distribution

of Â:

Aᵀ = M−1Â
ᵀ
=
[

M−1Â
ᵀ
p1

M−1Â
ᵀ
p2

. . . M−1Â
ᵀ
pp

]
3) Column Normalization: After computing the new

factor A, we normalize its columns and store the norms

in the F×1 vector λ. Processes first compute the local

column norms of Api and collectively find the global λ
with a parallel reduction. Finally, each process normalizes

the columns of Api
with λ.

Processes further parallelize the normalization process by

using the 1D decomposition of the matrix rows and finding

thread-local norms. The threads then use a reduction before

the global λ is computed.
4) Forming the New Gram Matrix: Each process needs

the updated AᵀA factor in order to form M during the

proceeding modes. We view the block matrix form of the

computation to derive a distributed algorithm:

AᵀA =
[

Aᵀ
p1

Aᵀ
p2

. . . Aᵀ
pp

]
⎡
⎢⎢⎣

Ap1

Ap2

. . .
App

⎤
⎥⎥⎦ =

p∑
i=1

Aᵀ
pi

Api .
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A1

A2

B1 B2 B3

C1

C2

(a) X is distributed over a 2×3×2 grid.

A2

B1 B2 B3

C1

C2

(b) Process layer p(2,:,:) collectively owns A2.

X (2,3,1)

A(2,3,1)

B(2,3,1)

C(2,3,1)

(c) Process p7 owns X 2,3,1 and the
shaded factor rows. Shaded nonzeros do
not result in communication.

Figure 2: A medium-grained decomposition for twelve processes.

Each process first computes its local Aᵀ
pi

Api . The 1D decom-

position on the rows of Api
is used again to extract thread-

level parallelism. We then perform an All-to-All reduction

to find the final matrix and distribute it among all processes.

5) Updating Non-Local Rows: Processes with non-local

rows of A must receive updated values before the next

MTTKRP operation. This communication is a dual of ex-

changing partial products during the distributed MTTKRP

operation. Any processes that sent partial MTTKRP products

to process pi now receive the updated rows of Api
.

6) Residual Computation: Convergence is tested at the

end of every iteration. In Section II-C we showed that

residual computation cost is bounded by 〈X ,Z〉, which uses

4F · nnz(X ) FLOPs. We observe that contributions from B
and C with X are already computed during the MTTKRP

operation. Thus, we can cache Â and rewrite Equation (2)

as

1ᵀ

⎡
⎢⎢⎣

Ap1
∗ Âp1

Ap2
∗ Âp2

. . .

App
∗ Âpp

⎤
⎥⎥⎦λ =

p∑
i=1

1ᵀ
(

Âpi
∗ Api

)
λ, (3)

where 1 is the vector of all ones. This reduces the compu-

tation to 2IF FLOPs.

Each process computes its own local 1ᵀ
(

Âpi ∗ Api

)
λ.

Thread-level parallelism is achieved via 1D row decompo-

sitions on Âpi
and Api

. Finally, we use a parallel reduction

on each node’s local result and form 〈X ,Z〉.

C. Extensions to Higher Modes

Extending our distributed CPD-ALS algorithm to tensors

with an arbitrary number of modes is straightforward. Sup-

pose X is a tensor with m modes and we wish to compute

factors A(1), . . . ,A(m).

Operation-efficient MTTKRP algorithms for a general

number of modes are found in [11], [16]. Adding partial

products from neighbor processes remains the same, with

the only consideration being that a layer is no longer a 2D

group of processes, but a group of dimension m−1.

Residual computation again is easily extended. General-

ized MTTKRP computes

Â
(1)

(i1, f) =
∑

X (i1, . . . , im)A(2)(i2, f) . . .A(n)(im, f),

and so we can directly use Equation (3) to complete the

residual calculation. Assuming Â
(1)

can be cached, our

algorithm does not increase in cost as more modes are added.

D. Complexity Analysis

The cost of CPD-ALS is bounded by MTTKRP and

its associated communication. Coarse-, medium-, and fine-

grained distributed algorithms distribute work such that each

process does O(F · nnz(X )/p) work. They differ, however,

in the overheads associated with communication. In this sec-

tion, we discuss the communication costs present in coarse-

and medium-grained decompositions for a single mode. We

define the communication cost as the number of words of

A and Â that must be communicated. The flexibility of

fine-grained decompositions makes analysis difficult; both

coarse- and medium-grained communication patterns are

possible if the nonzeros are distributed appropriately. In our

discussion we will use the personalized all-to-all collective

communication. Derivation of its complexity can be found

in [20].

Assume that X has m modes, is of dimension I× . . .×I ,

p processes are arranged in a m
√
p× . . .× m

√
p grid, and that

messages require O(1) time to transfer per word. A medium-

grained decomposition has two communication steps to

consider: aggregating non-local rows during an MTTKRP

operation and sending updated rows of Api after an iteration.

In the worst case, every process has nonzeros in all

(I/ m
√
p) slices of the layer. A process must send (I/p)

unique rows of Â to each of its neighbors in the layer. Using

a personalized all-to-all collective, this communication is

accomplished in time

IF

p

(
p

m−1
m − 1

)
=

(
IF
m
√
p
− IF

p

)
= O

(
IF
m
√
p

)
. (4)

The worst case of the update stage is sending (I/p) rows

to each of the p
m−1
m neighbors in the layer. This operation
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is the dual of Equation (4) and has the same cost.

In comparison, a coarse-grained decomposition will send

up to (I/p) rows to all p processes. The communication

overhead is thus

IF

p
(p− 1) = O (IF ) . (5)

No partial results from an MTTKRP operation need to

be communicated, however, so Equation (5) is the only

communication associated with a coarse-grained decompo-

sition. Comparing Equations (4) and (5) shows that only the

medium-grained decomposition can reduce communication

costs by increasing parallelism. We experimentally evaluate

this observation in Section VI-D.

V. COMPUTING THE DATA DECOMPOSITION

Our discussion so far has provided an overview of our

medium-grained data decomposition and a distributed algo-

rithm for CPD-ALS. There are two forms of overhead that an

ideal data decomposition will minimize: load imbalance and

communication volume. Graph and hypergraph partitioners

co-optimize these objectives, but can require significant pre-

processing. We chose to optimize the objectives separately.

We load balance the computation during the tensor decom-

position because computational load is mostly a function

of the number of nonzeros assigned to a process. Commu-

nication volume is optimized during the decomposition of

the factor matrices because the assignment of rows directly

impacts communication.

A. Finding a Balanced Tensor Decomposition

Our objective is to derive a load balanced q×r×s de-

composition of the modes of X . We begin by randomly

permuting the each mode of the tensor. The purpose of

the random permutation is to remove any ordering present

from the data collection process that could result in load

imbalance. Each mode is then partitioned independently.

The decomposition of the first mode into q parts is deter-

mined as follows: We greedily assign partition boundaries

by adding consecutive slices until a partition has at least

nnz(X )/q nonzeros. We call nnz(X )/q the target size of a

partition because it will result in a load balanced partitioning

of the mode. Slices can vary in density and adding a slice

with many nonzeros can push a partition significantly over

the target size. Thus, after identifying the slice which pushes

a partition over the target size we compare it to the slice

immediately before and choose whichever leads to better

balance.

Each of the independent mode decompositions is an

instance of the chains-on-chains partitioning problem, for

which there are fast exact algorithms [21]. We found that

in practice, using optimal partitionings led to higher load

imbalance than greedily choosing sub-optimal partitionings.

Since we ultimately work with the intersection of the 1D

partitionings, having optimality in each dimension does not

guarantee optimality in the final partitioning.

B. Partitioning the Factor Matrices

A process may have nonzeros whose indices correspond

to factor rows which are not owned by the process itself.

These non-local rows must be communicated. Thus, the

partitioning of rows during the sub-division of Ai directly

affects the number of partial results which are exchanged

during the MTTKRP operation. Our objective is to minimize

the total number of communicated rows, or the communica-
tion volume. We adapt a greedy method of assigning rows

developed for two-dimensional sparse matrix-vector multi-

plication [19]. We again partition each mode independently.

The sub-division of A is determined as follows: The

q chunks of of A are partitioned independently. For each

row ir in chunk Ai, processes count the number of tensor

partitions (and thus, processes) that contain a nonzero value

in slice X (ir, :, :). Any row that is found in only a single

partition is trivially assigned to the owner because it will not

increase communication volume. Next, the master process in

the layer p(i,:,:) coordinates the assignment of all remaining

rows. At each step it selects the processes with the two

smallest communication volumes, pj and pk, with pj having

the smaller volume. The master process sends a message

to pj instructing it to claim rows until its volume matches

pk. Processes first claim indices which are found in their

local tensor and only claim non-local ones when options are

exhausted. The assignment procedure sometimes reaches a

situation in which all processes have equal volumes but not

all rows have been assigned. To overcome this obstacle we

instruct the next process to claim a 1/(r×s) fraction of the

remaining rows.

These steps are then performed on the second and third

tensor modes to complete the decomposition.

C. Choosing the Shape of the Decomposition

Our decomposition does not require an equal number

of processes along each mode. We select at runtime the

number of processes that should be assigned to each mode.

Most tensors will feature one or more modes that are

significantly longer than the others. For example, the Netflix

tensor described in Section VI has over 20× more users

than it does films. When choosing the dimensions for the

decomposition, it is advantageous to assign more processes

to the long modes than the short ones. The reasoning behind

this decision is that short modes are likely to require storage

and communication regardless of the decomposition and we

should instead use more processes to further the decompose

the modes which can benefit.

A constraint we impose when computing the decompo-

sition is that the product of the dimensions must equal the

number of processes, i.e., q×r×s = p. To achieve this, we
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Algorithm 2 Deriving the decomposition shape

Input: dims, the dimensions of X ; m, the number of modes

in X ; p, the number of processes.

Output: P , a vector storing the decomposition dimensions

1: F ← the prime factors of p in non-increasing order

2: P ← 1, an m-dimensional vector of ones

3: � Find the optimal number of slices per process.

4: target ← (
∑m

i=1 dims[i]) /p
5: for all f ∈ F do � Assign a factor of p at a time

6: distances ← 0, an m-dimensional vector of zeros

7: � Find the mode with the most work per process

8: for i← 1 to m do
9: distances[i]← (dims[i]/P [i])− target

10: end for
11: furthest ← argmaxi distances[i]
12: P [furthest]← P [furthest]× f � Give f processes

13: end for

break p into its prime factors and greedily assign them to

modes. This process is detailed in Algorithm 2.

VI. EXPERIMENTAL METHODOLOGY & RESULTS

A. Experimental Setup

We used SPLATT to implement three versions of dis-

tributed CPD-ALS. We refer to the collection of our im-

plementations as DMS (distributed-memory SPLATT). The

first version, DMS-CG, uses a coarse-grained decomposi-

tion and is a direct implementation of the algorithm used

in SPLATT and adapted to distributed-memory systems.

The second method uses a medium-grained decomposition

described in Section IV and is denoted DMS-MG. Our

final implementation is DMS-FG, which follows the fine-

grained tensor decomposition used in the evaluation of

HYPERTENSOR [9]. All three algorithms use the same

computational kernels and only differ in decomposition and

the resulting communications. DMS-CG and DMS-MG are

implemented with personalized all-to-all collective opera-

tions, while DMS-FG uses point-to-point communications.

Zoltan [22] with PHG was used for hypergraph partition-

ing with LB APPROACH set to “PARTITION”. All hyper-

graphs were partitioned offline using 512 cores. Partitioning

required between 1400 seconds on Netflix and 6400 seconds

on Delicious.

DMS is implemented in C with double-precision floating-

point numbers and 64-bit integers. DMS uses MPI for

distributed memory parallelism and OpenMP for shared-

memory parallelism. All source code is available for down-

load1. Source code was compiled with GCC 4.9.2 using

optimization level three.

We compare against DFACTO, which to our knowledge

is the fastest publicly available tensor factorization software.

1http://cs.umn.edu/∼splatt/

Table I: Summary of datasets.

Dataset I J K nnz storage (GiB)
Netflix 480K 18K 2K 100M 3.0
Delicious 532K 17M 3M 140M 4.2
NELL 3M 2M 25M 143M 4.3
Amazon 5M 18M 2M 1.7B 51.9
Random1 20M 20M 20M 1.0B 29.8
Random2 50M 5M 5M 1.0B 29.8

nnz is the number of nonzero entries in the dataset. K, M, and B stand for
thousand, million, and billion, respectively. storage is the amount of memory
required to represent the tensor as (i, j, k) = v tuples using 64-bit integers
and 64-bit floating-point values.

DFACTO is implemented in C++ and uses MPI for dis-

tributed memory parallelism.

We used F = 16 for all experiments. Experiments were

carried out on HP ProLiant BL280c G6 blade servers on

a 40-gigabit InfiniBand interconnect. Each server had dual-

socket, quad-core Xeon X5560 processors running at 2.8

GHz with 8MB last-level cache and 22 gigabytes of available

memory.

B. Datasets

Table I is a summary of the datasets we used for

evaluation. The Netflix dataset is taken from the Netflix

Prize competition [23] and forms a user-item-time ratings

tensor. NELL [2] is comprised of noun-verb-noun triplets.

Amazon [1] is a user-item-word tensor parsed from product

reviews. We used Porter stemming [24] on review text

and removed all users, items, and words that appeared

less than five times. Delicious is a user-item-tag dataset

originally crawled by Görlitz et al. [25] and is also available

for download. Random1 and Random2 are both synthetic

datasets with nonzeros uniformly distributed. They have the

same number of nonzeros and total mode length (i.e., output

size), but differ in the length of individual modes.

C. Effects of Distribution on Load Balance

Table II shows the load imbalance with 64 and 128 nodes.

Load imbalance is defined as the ratio of the maximum

amount of work (tensor nonzeros) assigned to a process to

the average amount of work over all processes. DMS-CG

suffers severe load imbalance on the Amazon tensor, with

the imbalance growing from 2.17 with 64 nodes to 3.86
with 128 nodes. In contrast, DMS-MG has much lower

imbalance, with its largest ratios being only 1.08 with 64

nodes on Amazon. DMS-FG is the most balanced, with

Zoltan reaching 1.05 on Delicious with 128 nodes and 1.00
on all other that datasets we could partition.

D. Effects of Distribution on Communication Volume

Table III presents results for communication volume with

128 nodes. We only count communication that is a conse-

quence of the tensor decomposition, i.e., the aggregation of

partial products during MTTKRP operations and exchanging
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Table II: Load imbalance with 64 and 128 nodes.

DMS-CG DMS-MG DMS-FG
Dataset 64 128 64 128 64 128
Netflix 1.03 1.18 1.00 1.00 1.00 1.00

Delicious 1.21 1.41 1.01 1.06 1.00 1.05
NELL 1.12 1.29 1.01 1.01 1.00 1.00

Amazon 2.17 3.86 1.08 1.08 part part

Load imbalance is the ratio of the largest number of nonzeros assigned
to a process to the average number of nonzeros per process. part
indicates that we were unable to compute a hypergraph partitioning
in the memory available on 64 nodes. Hypergraph partitioning was
performed with the load imbalance parameter set to 1.10.

updated rows. We report the average volume per MPI

process as well as the maximum over all processes. We

define the communication volume as the total number of

rows sent and received per iteration, per MPI process. By

measuring the total number of rows communicated, and not

the number of words, our discussion is independent of the

rank of the decomposition. When F = 1, the number of

communicated rows is equal to the communicated words.

When the each process owns (I/p) rows of a factor,

the worst case communication volume results from sending

(I/p) rows to p processes and receiving I − (I/p) rows for

a total volume of 2I − (I/p). The maximum volume over

all modes is

Vmax = 2I + 2J + 2K − I + J +K

p
.

DFACTO uses a pessimistic approach to communication and

always has a communication volume of Vmax. DMS-CG

uses the same decomposition as DFACTO but instead utilizes

an optimistic approach in which only the necessary factor

rows are stored and communicated. Resultingly, DMS-CG

has a smaller communication volume than Vmax on all

datasets that we were able to collect results for. Despite

the added communication step of aggregating partial results

during the MTTKRP operations, DMS-MG and DMS-FG

exhibit lower average communication volumes than DMS-

CG on all datasets.

DMS-FG has the lowest average volume on all datasets

except Netflix. The discrepancy between mode lengths is

largest on Netflix, resulting in DMS-MG using a 64×2×1
decomposition of the tensor. By using most of processes to

partition only the longest mode, the majority of the possible

communication volume is constrained to the p(i,:,:) layers

which have only two processes each. DMS-MG avoids

partitioning the other tensor modes in exchange for greatly

reducing the communication along the longest mode.

While the average communication volumes are lowest

with DMS-FG, this method also sees the largest maximum

volumes. Hypergraph partitioners optimize the total com-

munication volume, not necessarily the maximum over any

process. Additionally, with fine-grained decompositions a

process may have to exchange rows with all other processes

Table III: Communication volume with 128 nodes.

DMS-CG DMS-MG DMS-FG
Dataset max avg max avg max avg
Netflix 674.8K 616.9K 99.3K 56.8K 2.6M 210.5K

Delicious 2.8M 2.3M 2.5M 1.6M 4.2M 719.2K
NELL 3.8M 3.4M 2.5M 1.7M 6.0M 1.2M

Amazon 8.3M 7.3M 4.0M 2.5M part part
Random1 72.1M 72.1M 39.5M 39.3M part part
Random2 55.2M 55.2M 23.6M 23.5M part part

Table values are the communication volumes with 128 MPI processes. max is the
maximum volume of any MPI process and avg is the average volume. part indicates
that we were unable to compute a hypergraph partitioning in the memory available on
64 nodes.

instead of being bounded by the size of a layer. Thus, some

processes can exhibit very large communication volumes in

exchange for a lower average.

E. Strong Scaling

Table IV shows the runtimes of our methods and

DFACTO. We scale from 2 to 128 computing nodes and

measure the time to perform one iteration of CPD-ALS

averaged over 50 runs. Each node has eight processors

available which we utilize. DMS is a hybrid MPI+OpenMP

code and so we use one MPI process and eight OpenMP

threads per node. DFACTO is a pure MPI code and so we

use eight MPI processes per node.

The DMS methods are faster than DFACTO on all

datasets. DMS-MG is 41× faster on Amazon and 76×
faster on Delicious when both methods use 128 nodes (1024

cores). Our success is due to several key optimizations. The

three DMS methods begin faster on small node counts due to

an MTTKRP algorithm which on average is 5× faster [11].

As we increase the number of nodes, DMS methods out-

scale DFACTO due to their ability to exploit parallelism

in the dense matrix operations that take place after the

MTTKRP operation. DMS methods also use significantly

less memory than DFACTO, which is unable to factor some

of our large datasets. This is due to a combination of our

optimistic factor storage and our MPI+OpenMP hybrid code.

DFACTO must replicate factors on every core to exploit

multi-core architectures. Even in the worst case, the DMS

methods only need one copy of each matrix factor (and in

practice, almost always less than one copy).

DMS-FG was unable to partition the tensors with billions

of nonzeros due to the overhead of hypergraph partitioning.

It is important to note that fine-grained decompositions are

not limited to only the hypergraph model, and nonzeros

could instead be randomly assigned to processes. However,

experimental results in [9] show that random assignment

results in runtime performance that is comparable to a

coarse-grained decomposition. On the tensors we were able

to factor, its performance is very comparable to DMS-CG

on Netflix and Delicious, but DMS-CG is 1.7× faster on

NELL.
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Table IV: Strong scaling results.

Netflix Delicious NELL

Nodes DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG
1 11.34 1.82 1.82 1.82 mem 7.90 7.90 7.90 mem 10.82 10.82 10.82
2 6.07 1.16 0.84 1.03 mem 4.82 4.11 6.98 mem 6.66 6.01 9.14
4 3.24 0.64 0.37 0.56 mem 3.08 2.23 4.43 mem 4.06 3.32 5.24
8 1.90 0.39 0.18 0.31 28.01 1.88 1.25 2.16 mem 2.55 2.02 3.46

16 1.34 0.23 0.09 0.22 25.54 1.26 1.04 1.35 mem 1.64 1.16 2.33
32 0.95 0.20 0.06 0.20 24.93 0.86 0.59 0.96 mem 1.09 0.82 1.74
64 0.82 0.19 0.04 0.19 25.15 0.81 0.37 0.66 mem 0.76 0.55 1.16

128 1.33 0.14 0.05 0.24 24.34 0.42 0.32 0.48 mem 0.53 0.35 0.92

(a)

Amazon Random1 Random2

Nodes DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG
8 mem mem 8.34 part mem mem 18.25 part mem mem 16.27 part

16 64.12 13.07 4.30 part mem 12.80 11.42 part mem mem 9.61 part
32 50.92 10.06 2.19 part mem 9.98 8.12 part mem 10.61 6.25 part
64 45.29 10.82 1.80 part mem 8.02 5.51 part mem 7.86 4.06 part

128 40.20 7.82 0.97 part mem 6.85 3.96 part mem 5.53 2.81 part

(b)

Table values are seconds per iteration of CPD-ALS, averaged over 50 iterations. mem indicates the configuration required more memory than available. part indicates that we
were unable to compute a data partitioning. Each node has eight cores which are fully utilized.

DMS-MG is the fastest method among the DMS im-

plementations. It ranges from 1.3× to 8.0× faster than

DMS-CG and 1.5× to 5.0× faster than DMS-FG In many

cases, DMS-MG is able to factor tensors when other meth-

ods cannot due to memory limitations or the hypergraph

partitioning overhead. Figure 3 graphs the strong scaling

results for the Netflix dataset. DMS-MG maintains near-

perfect speedup through 512 cores. Between 16 and 128

cores, DMS-MG achieves speedups which are super-linear.

We attribute this behavior to the decomposition shape that

DMS-MG chooses. As discussed in Section VI-D, almost

all processes are assigned to the first mode of the tensor.

In addition to decreasing the communication volume, this

has the added effect of decreasing the amount of A that is

stored and accessed on each node. As a result, the memory

hierarchy is better utilized during the computational kernels.

Interestingly, both DMS-MG and DMS-FG slow down be-

tween 512 and 1024 cores. This is a result of communication

imbalance. While the average communication volume per

node continues to decrease as we scale, we find that the

maximum communication increases after 64 nodes (512

cores). DMS-CG is able to decrease both the average and

maximum communication volume due to it having a much

larger amount of communication.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a medium-grained decomposition for

sparse tensor factorization. The decomposition addresses the

limitations of coarse-grained methods by avoiding complete

replication and communication of the factors. In addition,

the medium-grained decomposition does not require com-

putationally expensive pre-processing such as hypergraph

partitioning to have a low communication volume.

Figure 3: Average time per iteration in seconds on the Netflix

dataset. ideal-MG indicates perfect scalability relative to

DMS-MG.

Our implementation of medium-grained CPD-ALS algo-

rithm, DMS-MG, is a lightweight MPI+OpenMP hybrid that

further reduced memory footprint compared to pure MPI.

We compared against DFACTO, a state of the art distributed

CPD-ALS tool as well our own implementation of coarse-

and fine-grained methods. We found DMS-MG to be 41×
to 76× faster than DFACTO and 1.5× to 5.0× faster than

a fine-grained implementation with 1024 cores. Using only

eight computing nodes, DMS-MG is capable of factoring a

real-world tensor with 1.7 billion nonzeros in less than ten

minutes.
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