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Abstract—Low-rank sparse tensor factorization is a popular
tool for analyzing multi-way data and is used in domains
such as recommender systems, precision healthcare, and cy-
bersecurity. Imposing constraints on a factorization, such as
non-negativity or sparsity, is a natural way of encoding prior
knowledge of the multi-way data. While constrained factor-
izations are useful for practitioners, they can greatly increase
factorization time due to slower convergence and computational
overheads. Recently, a hybrid of alternating optimization and
alternating direction method of multipliers (AO-ADMM) was
shown to have both a high convergence rate and the ability to
naturally incorporate a variety of popular constraints. In this
work, we present a parallelization strategy and two approaches
for accelerating AO-ADMM. By redefining the convergence
criteria of the inner ADMM iterations, we are able to split
the data in a way that not only accelerates the per-iteration
convergence, but also speeds up the execution of the ADMM
iterations due to efficient use of cache resources. Secondly,
we develop a method of exploiting dynamic sparsity in the
factors to speed up tensor-matrix kernels. These combined
advancements achieve up to 8× speedup over the state-of-the-
art on a variety of real-world sparse tensors.

I. INTRODUCTION

Tensors are the generalization of matrices to higher orders.
Tensor factorization is a powerful tool for approximating and
analyzing multi-way data, and is popular in many domains
across machine learning and signal processing, including
recommender systems [1], precision healthcare [2], and
cybersecurity [3]. These domains produce sparse tensors
with millions to billions of non-zeros.

Oftentimes, a domain expert wishes to encode some prior
knowledge of the data in order to obtain a more interpretable
factorization. Prior knowledge is typically incorporated by
either forcing the solution to take some form (i.e., impos-
ing a constraint), or penalizing unwanted solutions (i.e.,
adding a regularization). For example, imposing a non-
negativity constraint on a factorization allows one to better
model data whose values are additive. Similarly, adding
a regularization term which encourages sparsity can help
model data whose interactions are sparse. While valuable
to practitioners, constrained and regularized factorizations
change the underlying computations and can significantly
increase the computational cost of factorization.

There is a growing body of research dedicated to effi-
cient optimization algorithms for constrained and regular-
ized tensor factorization, especially non-negative factoriza-

tion [4]–[6]. Huang et al. [7], [8] introduced AO-ADMM,
a hybridization of alternating optimization (AO) with the
alternating direction method of multipliers (ADMM). The
combination of the two frameworks allows AO-ADMM to
have both a fast convergence rate and the flexibility to in-
corporate new constraints and regularizations with minimal
effort.

However, alongside the growing body of research is an in-
creasing disparity between efficient optimization algorithms
and the available implementations for large-scale tensors.
Likewise, there are few available tools which flexibly sup-
port a variety of constraints, and to the best of our knowledge
none of them are parallel or handle large-scale data. Domain
experts must currently go through a major implementation
effort to explore the application of a new constraint or
regularization, and likely will not easily be able to analyze
the full amount of available data due to computational
complexity.

To that end, we present a parallelization strategy and high
performance implementation of the AO-ADMM framework
for shared-memory systems. Our algorithm features two
optimizations: (i) a blockwise reformulation of ADMM to
improve convergence rate, parallelism, and cache efficiency;
and (ii) a method of exploiting the sparsity which dynam-
ically evolves in the factorization. The blockwise refor-
mulation is applicable to any constraint or regularization
which is row separable (e.g., non-negativity or row simplex
constraints), and factor sparsity naturally occurs in many
constraints and regularizations including non-negativity.

In summary, our contributions include:

1) A blockwise reformulation of the AO-ADMM algo-
rithm which improves convergence and execution rate
while eliminating parallel synchronization overheads.

2) A method of leveraging sparsity in the factors as they
dynamically evolve.

3) An open source, high performance implementation of
AO-ADMM which flexibly handles new constraints
and regularizations.

The rest of this paper is organized as follows. Section II
introduces notation and details the AO-ADMM algorithm.
Section III reviews existing work on matrix and tensor
factorization. Section IV details the accelerated AO-ADMM
algorithm. Section V provides experimental evaluation and



discussion. Lastly, we provide concluding remarks in Sec-
tion VI.

II. PRELIMINARIES

A. Background and Notation

Tensors are the generalization of matrices to higher di-
mensions, or modes. We denote tensors with bold calli-
graphic letters (X ) and matrices as bold capital letters (A).
We focus on three-mode tensors for notational convenience,
but emphasize that the algorithms described in this work are
equally applicable to both matrices and higher order tensors.

A tensor non-zero with coordinate (i, j, k) is denoted
X (i, j, k), and matrix entries are similarly denoted A(i, j).
A colon in place of an index indicates all non-zero entries.
For example, A(i, :) is the ith row of A.

A tensor can be matricized (i.e., flattened) along any
of its modes. The matricized tensor along mode m is
denoted X(m). For example, the mode-1 matricization of
X ∈ RI×J×K is X(1) ∈ RI×JK .

Two important matrix operations are the Khatri-Rao and
the Hadamard products. The Khatri-Rao product, denoted
�, is the columnwise Kronecker product [9]. The Khatri-Rao
product of B ∈ RJ×F and C ∈ RK×F is is JK×F . The
Hadamard product, denoted ∗, is the elementwise product
of two matrices which must match in dimension.

B. Tensor Factorization

The canonical polyadic decomposition (CPD) is a widely
used factorization for large, sparse tensors [10]. The rank-
F CPD decomposes a tensor X ∈ RI×J×K into factors
A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F . The CPD approx-
imates a tensor as the summation of F outer products using
the columns of the factors (shown in Figure 1). We are most
often interested in a low-rank factorization, in which F is a
small constant on the order of 10 or 100.

We focus on the least-squares formulation of the CPD,
with loss function:

LS(X ,A,B,C) =

∥∥∥∥∥∥X −
F∑
f=1

A(:, f) ◦ B(:, f) ◦ C(:, f)

∥∥∥∥∥∥
2

F

.

Computing the CPD results in a non-convex optimization
problem:

minimize
A,B,C

LS(X ,A,B,C) + r(A) + r(B) + r(C), (1)

where r(·) is a penalty function. Constraints can be imple-
mented by having r(·) take the value of infinity when the
constraint is violated, and regularizations use finite values to
penalize unwanted (but valid) solutions. For example, a non-
negativity constraint uses the indicator function of R+ and
sparsity-inducing regularization uses ||·||1. Due to the similar
nature of constraints and regularizations, for the remainder
of the paper we will use the terms interchangeably.

≈ + · · ·+

Figure 1: The CPD as the summation of outer products.

For further background on tensors and tensor factoriza-
tion, we direct the reader to the survey by Kolda and
Bader [10].

C. AO-ADMM

Equation (1) is non-convex and commonly solved via
AO. When no constraints are enforced, AO becomes the
alternating least squares (ALS) algorithm. AO-ADMM [7],
[8] combines the AO framework with ADMM, which is
a popular framework for constrained optimization prob-
lems [11]. AO-ADMM inherits positive qualities from each:
a monotonically decreasing objective function from AO and
the ability to flexibly incorporate constraints from ADMM.

AO-ADMM proceeds with a sequence of outer and inner
iterations. Each step of an outer iteration optimizes one of
the matrix factors by means of ADMM. Internally, ADMM
executes a sequence of inner iterations to enforce constraints.
Since the ADMM algorithm is the same across all of the
tensor modes, we will simplify the discussion and only
consider the computations associated with the first mode.

When discussing ADMM, we refer to the primal and
dual variables as H ∈ RI×F and U ∈ RI×F , respectively.
An auxiliary variable H̃ ∈ RF×I is introduced to arrive at
a constrained optimization problem in the form of ADMM:

minimize
H,H̃

1

2

∥∥∥X(1) − H̃
T
(C � B)T

∥∥∥2
F
+ r(H) (2)

subject to H = H̃
T
.

Algorithm 1 details the resulting ADMM algorithm. It
accepts as input the primal and dual variables and two
additional matrices: (i) K ∈ RI×F , the matricized tensor
times Khatri-Rao product (MTTKRP) which is formed via
K ← X(1)(C � B); and (ii) G ∈ RF×F , the Gram matrix
which is formed via G← (C�B)T (C�B) = (BTB∗CTC).
Line 6 executes forward- and backward-substitution on an
F×I matrix in O(F 2I) time. Line 8 is the proximity oper-
ator and varies based on r(·). For example, non-negativity
constraints project to the non-negative orthant (i.e., “zero
out” negative entries). Line 9 updates the dual variable and
lastly, lines 10 and 11 compute the relative primal and dual
residuals.

Finally, the complete AO-ADMM framework is detailed
in Algorithm 2. The factors are cyclically updated using Al-
gorithm 1. Each MTTKRP operation requires O(F nnz(X ))
operations and is often the most expensive step of the AO-
ADMM framework. The relative costs of the factorization
steps are further explored in Section V.



Algorithm 1 ADMM to solve Equation (2)
1: Input: H, U, K, G
2: Output: H, U
3: ρ← trace(G)/F
4: L← Cholesky(G + ρI)
5: repeat . Inner iterations
6: H̃← L−TL−1 (K + ρ(H + U))

T

7: H0 ← H
8: H← argminH r(H) + ρ

2 ||H− H̃
T
+ U||2F

9: U← U + H− H̃
T

10: r ← ||H− H̃
T
||2F /||H||2F

11: s← ||H−H0||2F /||U||2F
12: until r < ε and s < ε

Algorithm 2 AO-ADMM
1: Initialize primal variables A, B, and C randomly.
2: Initialize dual variables Â, B̂, and Ĉ with 0.
3: repeat . Outer iterations
4: G← BTB ∗ CTC
5: K← X(1) (C � B) . MTTKRP
6: A, Â← ADMM(A, Â,K,G) . Algorithm 1
7:
8: G← ATA ∗ CTC
9: K← X(2) (C � A) . MTTKRP

10: B, B̂← ADMM(B, B̂,K,G) . Algorithm 1
11:
12: G← ATA ∗ BTB
13: K← X(3) (B � A) . MTTKRP
14: C, Ĉ← ADMM(C, Ĉ,K,G) . Algorithm 1
15: until LS(X ,A,B,C) ceases to improve.

III. RELATED WORK

A. Constrained Factorization

There is a large body of research dedicated to optimization
algorithms for constrained tensor factorization, especially in
the context of non-negativity constraints. Zhang et al. [4]
presented a parallel algorithm for dense non-negative tensor
factorization using projected gradient descent. Non-negative
tensor factorization was formulated for the ADMM frame-
work by Liavas and Sidiropoulos [12]. Recently, Kannan
et al. [13] developed a parallel algorithm for dense and
sparse non-negative matrix factorization using non-negative
least squares. For additional background on non-negative
factorizations, we direct the reader to the survey by Zhou et
al. [6] and the book by Cichocki et al. [14].

B. MTTKRP with a Sparse Tensor

AO-ADMM relies on computational kernels which are
also present while computing the unconstrained CPD.
Specifically, MTTKRP is also the most expensive com-
putational kernel in the unconstrained CPD and has re-

(a) Coordinate (b) CSF

Figure 2: Encodings of a four-mode tensor with 5 non-zeros.

Algorithm 3 MTTKRP with a three-mode CSF tensor
1: Input: Tensor X and factor matrices B and C
2: Output: K← X(1) (C � B)
3:
4: for i ∈ {1, . . . , I} in parallel do
5: K(i, :)← 0
6: for j ∈ X (i, :, :) do
7: z← 0F×1 . Buffer for accumulation.
8: for k ∈ X (i, j, :) do
9: z← z +X (i, j, k)C(k, :)

10: end for
11: K(i, :)← K(i, :) + z ∗ B(j, :)
12: end for
13: end for

ceived attention by the high performance computing com-
munity [15]–[20]. However, while many works have con-
sidered the case when the tensor is sparse, no works to our
knowledge have addressed the case when both the tensor
and factor matrices are sparse.

In prior work, we presented the compressed sparse fiber
(CSF) data structure for sparse tensors [21]. CSF, shown in
Figure 2, can be viewed as a higher-order generalization of
the compressed sparse row (CSR) storage format for sparse
matrices. CSF compresses the modes of a sparse tensor
recursively such that each path from a root to a leaf node
encodes the coordinates of a non-zero. The non-zero values
are stored at the lowest level of the trees.

Algorithm 3 presents a parallel algorithm for performing
MTTKRP for the first mode, using a three-mode CSF
tensor. The algorithm’s derivation and generalization to
higher modes can be found in prior work [16], [21]. The
computation takes the form of three nested loops, each
traversing a mode of the tensor. The innermost operations
scales rows of C by the tensor non-zeros.

IV. ACCELERATED AO-ADMM

We now present techniques for parallelizing and accelerat-
ing AO-ADMM (Algorithm 2). We begin with a paralleliza-
tion strategy for ADMM (Algorithm 1) and then discuss a re-
formulation which improves convergence and computational



efficiency. Next, we introduce a strategy for accelerating
MTTKRP by exploiting the sparsity that naturally occurs
in the factor matrices.

A. Parallelized ADMM

There is a wealth of research that focuses on accelerating
the individual dense matrix kernels that constitute ADMM.
These include matrix multiplication, Cholesky factorization,
and forward/backward substitution [22]. Since the matrices
of interest are tall and skinny, the kernels will ultimately be
parallelized over the matrix rows while carefully optimizing
for cache and other hardware features. Additionally, many
popular constraints have proximity operators which are row
separable. These include l1 regularization for sparsity, non-
negativity, and row simplex constraints.

A consequence of row separable computations is that
Lines 6 through 9 in Algorithm 1, which comprise the
bulk of the ADMM computation, can all be parallelized
by distributing rows of the tall and skinny matrices to
threads. Lastly, convergence can be computed in parallel
using any decomposition of the primal and dual variables.
Each thread computes thread-local primal and dual norms
(Lines 10 and 11) which are then aggregated.

B. Blocked ADMM

While the previous parallelization strategy offers a large
amount of parallelism by focusing on the individual kernels,
it does not take into account the iterative nature of the
ADMM as a whole. We consider two challenges that emerge
when viewing the ADMM algorithm beyond just a sequence
of optimized kernels:

Non-uniform convergence: Real-world datasets often
exhibit non-zeros which follow a power-law distribution. For
example, a product rating tensor used by a recommender sys-
tem will have some popular items and prolific users, while
on average each item and user only have a few submitted
ratings. It is natural to expect the rows corresponding to
prolific users and items to carry much of the factorization’s
information. A consequence is that these “high-signal” rows
may require many more iterations to converge than the
average row. Since convergence criteria is an aggregation
of all rows, this disparity not only decreases factorization
quality by performing too few iterations on the high-signal
rows, but also increases factorization time by performing
additional iterations on the low-signal rows.

Memory bandwidth: Each step in Algorithm 1 in-
volves a linear pass over the primal and dual matrices.
Note that even the computationally intensive step, the for-
ward/backward substitutions requiring O(F 2I) operations,
is linear in the large row dimension. If the size of the
matrices exceed the size of the CPU cache, then we will
access the matrices entirely from main memory instead
of cache. Thus, the performance of Algorithm 1 will be

determined by a machine’s memory bandwidth instead of
its compute capabilities.

We address both limitations by developing a blockwise
reformulation of Equation 2. If the proximity operator is
row separable, we split the problem into B blocks of rows:

minimize
{(Hi,H̃i)}

B∑
b=1

1

2

∥∥∥(X(1))b − H̃
T

b (C � B)Tb
∥∥∥2
F
+ r(Hb)

subject to H1 = H̃1, . . . ,HB = H̃B .

Each of the blocks can then be optimized independently
using Algorithm 1.

The blockwise reformulation accelerates convergence by
allowing each block of rows to converge using different
numbers of iterations. At one extreme, if B = I then we
separately optimize the solution for each row. In effect, the
amount of work performed on each row is independent of
all others. Therefore, the rows which take many iterations
to converge will not be affected by those which converge
early. Similarly, computation will not be wasted on rows
which have already converged.

Likewise, the blockwise reformulation improves compu-
tational performance by creating temporal locality in the
matrices. Since a block is processed until it has converged,
a sufficiently small block size will allow of the necessary
matrix data to be cache resident throughout the optimization
procedure. Hence, we can expect to achieve better perfor-
mance than the previously memory-bound formulation.

From a parallelization standpoint, this blockwise refor-
mulation naturally provides an alternative decomposition
of the computations. Instead of parallelizing the individ-
ual steps within Algorithm 1, we can simply distribute
blocks to threads. This has the benefit of eliminating all
synchronization overheads, as each block can be optimized
totally in parallel. Even though blocks are equal in size,
they may require different numbers of iterations. Thus, we
cannot statically distribute blocks and instead dynamically
load balance the optimization at block-level granularity. The
work distribution is a simple loop over the B blocks and can
be managed by the dynamic looping mechanism provided by
many parallel frameworks such as OpenMP.

Selecting the number of blocks affects both convergence
rate and execution performance. A natural first choice is to
use B=I and optimize over each row individually. In effect,
the convergence benefits are maximized while guaranteeing
cache residency for all but very high-rank factorizations.
Unfortunately, other overheads such as function calls and
instruction cache misses are exaggerated when such a small
amount of work is performed in each step. We empirically
found that blocks of 50 rows offered a good trade-off
between convergence and execution.

While we focus on shared-memory parallelism in this
work, we note that the blockwise formulation also affords



opportunities for distributed-memory parallelism. Since each
block is processed independently, no communication needs
to occur beyond the MTTKRP operation, which has efficient
distributed-memory algorithms [17], [23].

C. MTTKRP with Sparse Factors

Sparsity in the CPD factors is an attractive characteristic
to practitioners. Intuitively, a sparse solution is a more
simple one, and is thus easier to interpret and to gain insight
from. Factor sparsity is also attractive from a performance
perspective, as it affords opportunities for computational
savings by avoiding operations with zero elements.

We focus our sparsity optimizations on the MTTKRP
operation. Each tensor non-zero results in an access to
the matrix factors, and thus MTTKRP can benefit greatly
from sparsity. MTTKRP is primarily bound by memory
bandwidth due to accesses to the factor matrices [16], [19],
and thus optimizations should reduce the volume of data
fetched from the factors in order to achieve speedups. This
is especially challenging when computing with a small rank,
as each row has relatively few elements regardless, and thus
memory savings are limited to a fraction of a cache line.

A first solution is to store a copy of the sparse factors in
CSR format. CSR allows the factors to be randomly accessed
by rows, which is required during MTTKRP (Algorithm 3).
Since only the non-zero values and their indices are repre-
sented, the amount of data fetched from main memory scales
with the matrix sparsity. Fortunately, the switch from a dense
to compressed matrix format only requires minor changes
to the MTTKRP algorithm. Whole rows of the factor are
accessed at a time, and thus we only need to account for the
difference between a dense and sparse row representation. In
practice, the cost of accessing C dominates accesses to the
other factor matrices due to it being accessed by every non-
zero instead of fiber or slice. Therefore, we only represent C
in CSR form and only need to modify Line 9 of Algorithm 3.

While a CSR representation decreases the effects of
limited memory bandwidth, it increases the effects of mem-
ory latency. Consider the difference in implementation of
dense and CSR matrices. A dense matrix will incur one
latency cost when initially accessing a row of C, but the
remaining entries exhibit spatial locality and will be fetched
from main memory within the same cache line. Adjacent
cache lines should be fetched by the hardware prefetching
mechanisms. A CSR matrix, however, is implemented with
three structures which encode the row length, the non-zero
indices, and the non-zero values. The row length is required
to index into the indices and values, and thus multiple
latency costs will be incurred.

We address the challenge of memory latency costs by con-
sidering a hybrid combination of the dense and sparse matrix
structures. Much like the distribution of tensor non-zeros,
the sparsity patterns of the matrix factors are non-uniform.
Importantly, C may have a few mostly-dense columns, with

Table I: Summary of datasets.

Dataset NNZ I J K
Reddit [24] 95M 310K 6K 510K
NELL [25] 143M 3M 2M 25M
Amazon [26] 1.7B 5M 18M 2M
Patents [27] 3.5B 46 240K 240K

NNZ is the number of nonzero entries in the dataset. I, J, and
K are the dimensions of the datasets. K, M, and B stand for
thousand, million, and billion, respectively.

the remaining ones containing only a few non-zeros. We
call a column “dense” when it contains more non-zeros than
the average column density. When constructing the hybrid
structure, we first sort the columns based on the number
of non-zeros and place the dense columns first. The dense
columns are represented with a simple dense matrix, and the
remaining sparse columns are stored in CSR format. When
a row of C is accessed during MTTKRP, we use software
prefetching to begin fetching the CSR structure. During the
data movement, we compute with the dense entries of the
row. Finally, the row of the CSR structure is processed after
the dense component.

Unlike the tensor which has a static sparsity pattern
throughout the factorization, the sparsity patterns of the
factors are dynamic. Therefore, techniques to exploit sparsity
must be carefully vetted for efficiency, because their over-
heads are not amortized over multiple iterations. The poten-
tial gains that can be achieved by using a CSR representation
to accelerate MTTKRP need to be balanced with the cost of
constructing this CSR representation. Constructing the CSR
matrix is an O(IF ) operation due to it requiring a pass
over the dense matrix to determine the sparsity pattern. For-
tunately, this overhead is negligible when multiple ADMM
iterations are performed, each taking O(F 2I) time.

V. RESULTS

A. Experimental Methodology

Datasets: Table I summarizes the tensors used in our
evaluation. We selected four real-world tensors from various
domains which are publicly available as part of the FROSTT
collection [27]. NELL is a noun-verb-noun tensor from the
Never Ending Language Learning project [25]. Reddit is a
user-community-word tensor encoding a subset of comments
on Reddit from 2007 to 2010 [24]. Amazon is a user-item-
word tensor of product reviews [26]. Patents is a year-
word-word tensor of pairwise co-occurrence probabilities
from United States utilities patents.

Machine & Software Configuration: Experiments were
performed on a workstation with 396GB of main memory
and two ten-core Intel Xeon E5-2650v3 processors with
25MB of last-level cache. Our source code is modified from
SPLATT version 1.1.1, a C library for high performance
sparse tensor factorization [28]. Our source code is to be
made part of the next SPLATT release. We use the Intel
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Figure 3: Fraction of time spent in MTTKRP and ADMM
during rank-50 non-negative factorization.

compiler version 17.0.1 and Intel MKL used for Cholesky
factorization and forward/backward substitution. OpenMP is
used for parallelism. Unless otherwise specified, we run with
one twenty OpenMP threads.

Convergence Criteria: We follow the factorization
community and use a normalized value of LS(·) to measure
the quality of a factorization. Specifically, we measure the
relative error between X and its factored form:

relative error =

∥∥∥X −∑F
f=1 A(:, f) ◦ B(:, f) ◦ C(:, f)

∥∥∥2
F

‖X‖2F
.

Convergence is detected when the relative error improves
less than 10−6 or if we exceed 200 outer iterations.

B. Relative Factorization Costs

We first investigate the performance characteristics of a
parallel implementation of AO-ADMM without blocking
or sparsity optimizations. Figure 3 shows the fraction of
factorization time spent in the main computational kernels of
Algorithm 2 (i.e., MTTKRP and ADMM) during a rank-50
non-negative factorization.

Neither of the kernels consistently dominate the compu-
tation. NELL has both the longest modes of the datasets
and is also the most sparse, and therefore spends most of
the runtime in ADMM updating the factors. Amazon and
Patents, on the other hand, are dominated by MTTKRP.
These tensors have more non-zeros and are both more dense
than NELL, which emphasizes the cost of MTTKRP. These
results indicate that in order to achieve high performance,
both the computations performed during ADMM and MT-
TKRP need to be optimized and parallelized effectively.

C. Parallel Scalability

We examine the parallel scalability of the baseline AO-
ADMM algorithm in Figure 4. The baselines achieve
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Figure 4: Speedup on baseline rank-50 non-negative CPD.
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Figure 5: Speedup on blocked rank-50 non-negative CPD.

speedups ranging from 5.4× on NELL to 12.7× on
Patents. Note that the amount of achieved speedup is
related to the amount of time spent on MTTKRP in Figure 3.
The datasets which are dominated by the cost of MTTKRP
exhibit the best scalability due to the already-optimized
kernels provided by SPLATT.

We now observe the parallel scalability of the blocked
AO-ADMM algorithm in Figure 5. Speedups range from
12.7× on Patents to 14.6× on NELL. The trend ob-
served on the baseline scalability is reversed: datasets which
are dominated by ADMM runtime now achieve the best
scalability. This is expected, as blocked ADMM features
high temporal locality and minimal synchronization costs
compared to its baseline counterpart.



Table II: Effects of sparse matrix data structures on CPD runtime.

Reddit Amazon
F = 50 F = 100 F = 200 F = 50 F = 100 F = 200

3% dense 1% dense 2% dense 3% dense 3% dense 5% dense
DENSE 227.8 430.7 1774.9 305.9 715.3 18120.0
CSR 212.7 231.6 1000.5 272.6 539.2 12535.6
CSR-H 199.4 186.3 903.5 320.6 588.5 13476.5

Values are the total time in seconds to compute the CPD. We impose a 10−1|| · ||1 regularization
on all factors to promote sparsity. The density of each rank indicates the density of the longest factor
matrix (i.e., the matrix that is stored in a sparse representation during MTTKRP). Density is computed
via nnz(C)/KF . DENSE uses a baseline MTTKRP implementation with a dense matrix. CSR uses the
compressed sparse row (CSR) format during MTTKRP. CSR-H uses the hybrid dense and CSR format.

D. Convergence Rate

We now evaluate the benefits of the blockwise formula-
tion on the convergence of AO-ADMM. It is important to
separate the speedups achieved by accelerated convergence
and by faster execution rate. Figure 6 shows convergence
on all datasets as both a function of time and the number
of outer iterations. Including convergence as a function of
outer iteration allows us to observe the effects of blocked
ADMM without considering machine effects such as cache
locality. When a solution of higher quality (i.e., lower error)
is reached, or fewer outer iterations are performed, then we
know that convergence has been improved.

Blocking improves the per-iteration convergence on every
evaluated dataset. The positive benefits of blocking are
observed in two forms: (i) reaching a higher-quality solution
in the same or less time, or (ii) converging to a compa-
rable solution in fewer iterations. For example, NELL and
Amazon both converge to lower errors than the baselines.
This is most exemplified with NELL, which converges 3.7×
faster and reaches a 3% lower error. The success of NELL is
a result of the combination of both faster ADMM iterations
and additional ADMM iterations being performed on the
“high-signal” blocks. Reddit and Patents, on the other
hand, converge in fewer iterations due to blocking and reach
errors that are less than 1% higher than the baseline.

E. Accelerating MTTKRP with Factor Sparsity

We now evaluate the benefits of exploiting factor sparsity
during MTTKRP. We compute l1-regularized factorizations
in order find to sparse solutions. For each factor, we set
r(·) = 10−1|| · ||1. We omit NELL and Patents from this
evaluation because they did not tend to exhibit sparsity and
instead converged to either mostly dense or totally zero
solutions as the regularization parameter was introduced.

Table II shows the time-to-solution for Reddit and
Amazon on a variety of ranks. For each configuration, we
include times for the baseline dense computation, CSR, and
the hybrid dense and CSR computation. Notably, the com-
plete factorization time is presented despite the evaluated
algorithms only benefiting the MTTKRP portion of the fac-
torization. The time-to-solution more accurately portrays the
benefits of sparsity as it accounts for conversion overheads

and the early iterations in which the factors are not yet
sparse. For our evaluation, we empirically determined that
a factor can be gainfully treated as sparse when its density
falls below 20%.

Exploiting sparsity outperforms the baseline dense com-
putation in all cases. Speedups from sparse MTTKRP range
from 1.1× to 2.3×. Interestingly, the hybrid CSR data
structure is beneficial for Reddit but not Amazon. While
the two datasets feature similar levels of sparsity in their
largest factor matrix, the longest mode of Amazon is over
thirty times longer than Reddit. Further investigation is
needed in order to predict the best choice of data structure
based on the tensor properties, and is left to future work.

VI. CONCLUSIONS & FUTURE WORK

We studied the acceleration and high performance im-
plementation of AO-ADMM, a recent framework for con-
strained tensor factorization. We presented a parallelization
and two optimizations which together accelerate the com-
plete factorization process. First, a blockwise reformulation
improves performance up to 4× by creating temporal cache
locality, eliminating parallel synchronization costs, and ac-
celerating convergence. Second, we exploit the sparsity that
dynamically emerges in the factorization output to reduce
operations and memory bandwidth in the primary tensor
kernel, achieving up to 2.3× additional speedup.

There are several items of future work. First, further inves-
tigation is required in order to automatically select the best
data structure for the sparse matrix factors during MTTKRP.
Second, an analytical model of the ADMM algorithm could
provide a method of choosing block sizes.
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Figure 6: Effects of blockwise ADMM on rank-50 non-negative factorization. base and blocked are the unblocked and
blocked algorithms, respectively.
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