
Constrained Tensor Factorization
with Accelerated AO-ADMM

Shaden Smith1∗, Alec Beri2, and George Karypis1

1Department of Computer Science & Engineering, University of Minnesota
2Department of Computer Science, University of Maryland

∗shaden@cs.umn.edu

1 / 26

shaden@cs.umn.edu

Table of Contents

Introduction

Accelerated AO-ADMM

Experiments

Conclusions

1 / 26

Tensor Introduction

I Tensors are the generalization of matrices to higher dimensions.
I Allow us to represent and analyze multi-dimensional data.
I Applications in precision healthcare, cybersecurity, recommender

systems, . . .

p
atien

ts

procedures
di
ag
no
se
s

2 / 26

Canonical polyadic decomposition (CPD)

The CPD models a tensor as the summation of rank-1 tensors.

≈ + · · ·+

minimize
A,B,C

L(X ,A,B,C) =

∥∥∥∥∥X −
F∑

f=1

A(:, f) ◦ B(:, f) ◦ C(:, f)

∥∥∥∥∥
2

F

Notation
A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F denote the factor matrices for a 3D
tensor.

3 / 26

Alternating least squares (ALS)

The CPD is most commonly computed with ALS:

Algorithm 1 CPD-ALS

1: while not converged do

2: AT ← (CTC ∗ BTB)−1
(
X(1)(C � B)

)T
3: BT ← (CTC ∗ ATA)−1

(
X(2)(C � A)

)T
4: CT ← (BTB ∗ ATA)−1︸ ︷︷ ︸

Normal equations

(
X(3)(B � A)

)T︸ ︷︷ ︸
MTTKRP

5: end while

Notation
∗ denotes the Hadamard (elementwise) product.

4 / 26

Constrained factorization

We often want to impose some constraints or regularizations on the
factorization:

minimize
A,B,C

L(X ,A,B,C)︸ ︷︷ ︸
Loss

+ r(A) + r(B) + r(C)︸ ︷︷ ︸
Constraints/Regularizations

Example
Non-negative factorizations use an indicator function for R+:

r(A) =

{
0 if A ≥ 0

∞ otherwise

5 / 26

AO-ADMM [Huang & Sidiropoulos ’15]

AO-ADMM combines alternating optimization (AO) with alternating
direction method of multipliers (ADMM).

I A, B, and C are updated in sequence using ADMM.

ADMM formulation for the update of A:

minimize
A,Ã

1

2

∥∥∥X(1) − Ã
T

(C � B)T
∥∥∥2
F

+ r(A)

subject to A = Ã
T
.

6 / 26

AO-ADMM [Huang & Sidiropoulos ’15]

AO-ADMM combines alternating optimization (AO) with alternating
direction method of multipliers (ADMM).

I A, B, and C are updated in sequence using ADMM.

ADMM formulation for the update of A:

minimize
A,Ã

1

2

∥∥∥X(1) − Ã
T

(C � B)T
∥∥∥2
F

+ r(A)

subject to A = Ã
T
.

6 / 26

Alternating optimization step (outer iterations)

1: Initialize primal variables A, B, and C randomly.
2: Initialize dual variables Â, B̂, and Ĉ with 0.
3: repeat
4: G← BTB ∗ CTC
5: K← X(1) (C � B)

6: A, Â← ADMM(A, Â,K,G)
7:

8: G← ATA ∗ CTC
9: K← X(2) (C � A)

10: B, B̂← ADMM(B, B̂,K,G)
11:

12: G← ATA ∗ BTB
13: K← X(3) (B � A)

14: C, Ĉ← ADMM(C, Ĉ,K,G)
15: until L(X ,A,B,C) ceases to improve.

7 / 26

ADMM step (inner iterations)

ADMM to update one factor matrix:

1: Input: H, U, K, G
2: Output: H, U
3: ρ← trace(G)/F
4: L← Cholesky(G + ρI)
5: repeat
6: H0 ← H
7: H̃← L−TL−1 (K + ρ(H + U))T

8: H← argminH r(H) + ρ
2 ||H− H̃

T
+ U||2F

9: U← U + H− H̃
T

10: r ← ||H− H̃
T ||2F/||H||2F

11: s ← ||H−H0||2F/||U||2F
12: until r < ε and s < ε

8 / 26

Table of Contents

Introduction

Accelerated AO-ADMM

Experiments

Conclusions

8 / 26

Parallelization opportunities

All steps but Line 8 are either element-wise or row-wise independent.

1: Input: H, U, K, G
2: Output: H, U
3: ρ← trace(G)/F
4: L← Cholesky(G + ρI)
5: repeat
6: H0 ← H
7: H̃← L−TL−1 (K + ρ(H + U))T

8: H← argminH r(H) + ρ
2 ||H− H̃

T
+ U||2F

9: U← U + H− H̃
T

10: r ← ||H− H̃
T ||2F/||H||2F

11: s ← ||H−H0||2F/||U||2F
12: until r < ε and s < ε

9 / 26

Performance opportunities

1. The factor matrices are tall-skinny (e.g., 106×50).
I The ADMM step will be bound by memory bandwidth.

2. Real-world tensors have non-uniform distributions of non-zeros.
I This may lead to non-uniform convergence of the factor rows

during ADMM.

3. Many constraints and regularizations naturally invoke sparsity in
the factors.

I We can exploit this sparsity during MTTKRP (in paper).

10 / 26

Blocked ADMM

If the proximity operator coming from r(·) is row-separable,
reformulate the ADMM problem to work on B blocks of rows:

minimize
(A1,Ã1),...,(AB ,ÃB)

B∑
b=1

1

2

∥∥∥(X(1))b − Ã
T
b (C � B)Tb

∥∥∥2
F

+ r(Ab)

subject to A1 = Ã1, . . . ,AB = ÃB .

Optimizing each block separately allows for them to converge at
different rates, while acting as a form of cache tiling.

11 / 26

Blocked ADMM

More simply:

12 / 26

Effects of block size

The block size affects both convergence rate and computational
efficiency:

I A block size of 1 optimizes each row of H independently.

I Larger block sizes better utilize hardware resources, but should
be chosen to fit in cache.

Our evaluation uses F=50, and we experimentally found a block size
of 50 rows to be a good balance between convergence rate and
performance.

13 / 26

Table of Contents

Introduction

Accelerated AO-ADMM

Experiments

Conclusions

13 / 26

Experimental Setup

Source code:

I Modified from SPLATT 1

I Written in C and parallelized with OpenMP

I Compiled with icc v17.0.1 and linked with Intel MKL

Machine specifications:

I 2× 10-core Intel Xeon E5-2650v3 (Haswell)

I 396GB RAM

1https://github.com/ShadenSmith/splatt

14 / 26

https://github.com/ShadenSmith/splatt

Convergence measurement

We measure convergence based on the relative reconstruction error:

relative error =
L(X ,A,B,C)

‖X‖2F
.

Termination:

I Convergence is detected when the relative error improves less
than 10−6 or if we exceed 200 outer iterations.

I ADMM is limited to 50 iterations and ε = 10−2.

15 / 26

Datasets

We selected four tensors from the FROSTT 2 collection based on
non-negative factorization performance:

I require a non-trivial number of iterations

I have a factorization quality that suggests a non-negative CPD is
appropriate

Dataset NNZ I J K
Reddit 95M 310K 6K 510K
NELL 143M 3M 2M 25M
Amazon 1.7B 5M 18M 2M
Patents 3.5B 46 240K 240K

2http://frostt.io/

16 / 26

http://frostt.io/

Relative Factorization Costs

Fraction of time spent in MTTKRP and ADMM during a rank-50
non-negative factorization:

Reddit NELL Amazon Patents0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
ti

on
 o

f f
ac

to
ri

za
ti

on
 t

im
e

MTTKRP ADMM OTHER

17 / 26

Parallel Scalability

Blocked ADMM improves speedup when the factorization is
dominated by ADMM:

1 2 4 8 10 20
Threads

1
2

4

8

10

20

Sp
ee

du
p

Reddit
NELL
Amazon
Patents
ideal

Baseline

1 2 4 8 10 20
Threads

1
2

4

8

10

20

Sp
ee

du
p

Reddit
NELL
Amazon
Patents
ideal

Blocked

18 / 26

Convergence: Reddit

Blocking results in faster per-iteration runtimes and also converges in
fewer iterations.

0 10 20 30 40 50 60 70 80 90
Time (s)

0.85

0.86

0.87

0.88

0.89

Re
la

ti
ve

 e
rr

or

base
blocked

0 5 10 15 20 25 30 35 40 45
Outer iteration

0.85

0.86

0.87

0.88

0.89

Re
la

ti
ve

 e
rr

or

base
blocked

19 / 26

Convergence: NELL

Convergence is 3.7× faster with blocking, despite using additional
iterations to achieve a lower error.

0 500 1000 1500 2000 2500 3000
Time (s)

0.54

0.56

0.58

0.60

0.62

Re
la

ti
ve

 e
rr

or

base
blocked

0 5 10 15 20 25 30
Outer iteration

0.54

0.56

0.58

0.60

0.62

Re
la

ti
ve

 e
rr

or

base
blocked

20 / 26

Convergence: Amazon

Both formulations exceed the maximum of 200 outer iterations, but
the blocked formulation achieves a lower error in less time.

0 2000 4000 6000 8000 10000 12000
Time (s)

0.64

0.65

0.66

0.67

0.68

0.69

Re
la

ti
ve

 e
rr

or

base
blocked

0 50 100 150 200
Outer iteration

0.64

0.65

0.66

0.67

0.68

0.69

Re
la

ti
ve

 e
rr

or

base
blocked

21 / 26

Convergence: Patents

Per-iteration runtimes are largely unaffected, as Patents is
dominated by MTTKRP time. However, fewer iterations are required.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)

0.540

0.545

0.550

0.555

0.560

0.565

0.570

Re
la

ti
ve

 e
rr

or

base
blocked

0 20 40 60 80 100 120 140
Outer iteration

0.540

0.545

0.550

0.555

0.560

0.565

0.570

Re
la

ti
ve

 e
rr

or

base
blocked

22 / 26

Table of Contents

Introduction

Accelerated AO-ADMM

Experiments

Conclusions

22 / 26

Wrapping up

Blocked ADMM accelerates constrained tensor factorization in two
ways:

I Optimizing blocks independently saves computation on the
“simple” rows and better optimizes “hard” rows.

I Blocks can be kept in cache during ADMM, saving memory
bandwidth.

Also in the paper:

I MTTKRP can be accelerated by exploiting the sparsity that
dynamically evolves in the factors.

I An additional ∼ 2× speedup is achieved.

Future work:

I Analytical model for selecting block sizes.

I Automatic runtime selection of data structure for sparse factors.

23 / 26

Reproducibility

All of our work is open source (in the wip/ao-admm branch for now):

https://github.com/ShadenSmith/splatt

Datasets are freely available:

http://frostt.io/

24 / 26

https://github.com/ShadenSmith/splatt
http://frostt.io/

Backup Slides

24 / 26

Matricized tensor times Khatri-Rao product

MTTKRP is a key kernel for computing the CPD:

K = X(1) (C � B)

X(1)

(C � B)

IK =

FJ × K

J × K

Notation
X(1) unfolds a tensor.
(C � B) is the Khatri-Rao (columnwise Kronecker) product.

25 / 26

Sparse MTTKRP

Convergence on Reddit with F = 100 and r(·) = 10−1|| · ||1.

0 100 200 300 400 500
Time (s)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Re
la

ti
ve

 e
rr

or

base
dense
CSR
CSR-H

26 / 26

Compressed sparse fiber (CSF)

I Modes are recursively compressed.

I Paths from roots to leaves encode non-zeros.

I The tree structure encodes opportunities for savings.

26 / 26

MTTKRP with CSF

/∗ f o r e a c h ou t e r s l i c e ∗/
f o r (i n t i =0; i < I ; ++i) {

/∗ f o r e a c h f i b e r i n s l i c e ∗/
f o r (i n t s = s p t r [i] ; s < s p t r [i +1] ; ++s) {

accum [0 : r] = 0 ;

/∗ f o r e a c h nnz i n f i b e r ∗/
f o r (i n t nnz = f p t r [s] ; nnz < f p t r [s +1] ; ++nnz) {

i n t k = f i d s [nnz] ;
accum [0 : r] += v a l s [nnz] ∗ C[k] [0 : r] ;

}

i n t j = s i d s [s] ;
A [i] [0 : r] += accum [0 : r] ∗ B[s] [0 : r] ;

}
}

26 / 26

	Introduction
	Accelerated AO-ADMM
	Experiments
	Conclusions

