Constrained Tensor Factorization
with Accelerated AO-ADMM

Shaden Smith'*, Alec Beri?, and George Karypis?

IDepartment of Computer Science & Engineering, University of Minnesota
2Department of Computer Science, University of Maryland
*shaden@cs.umn. edu

shaden@cs.umn.edu

Table of Contents

Introduction

Tensor Introduction

» Tensors are the generalization of matrices to higher dimensions.

» Allow us to represent and analyze multi-dimensional data.

» Applications in precision healthcare, cybersecurity, recommender
systems, ...

sjusiied

procedures

Canonical polyadic decomposition (CPD)

The CPD models a tensor as the summation of rank-1 tensors.

‘ /4 /4
T /1 /1
/‘; ,,,,,, - =] |:| +-.--4+ |:|
F 2
minimize ~ L£(X,A,B,C) = H — > A(:,f)oB(:, f) o C(:, f)
T f=1 F

Notation
A c R™*F B e R*F, and C € R¥*F denote the factor matrices for a 3D
tensor.

Alternating least squares (ALS)

The CPD is most commonly computed with ALS:

Algorithm 1 CPD-ALS

1: while not converged do

2 AT« (CTCxBB)! (Xy(CoB))’

3 BT« (CTC+ATA) (X;»(CoA))"

4 CT+ (BTBxATA) ! (X3(BOA))"
~—_———

Normal equations MTTKRP

5. end while

Notation
* denotes the Hadamard (elementwise) product.

Constrained factorization

We often want to impose some constraints or regularizations on the
factorization:

mi/?iBmcize L(X,A,B,C)+ r(A)+ r(B)+ r(C)
o Loss Constraints/Regularizations
Example

Non-negative factorizations use an indicator function for R, :

r(A):{o if A>0

oo otherwise

AO-ADMM [Huang & Sidiropoulos '15]

AO-ADMM combines alternating optimization (AO) with alternating
direction method of multipliers (ADMM).

» A, B, and C are updated in sequence using ADMM.

AO-ADMM [Huang & Sidiropoulos '15]

AO-ADMM combines alternating optimization (AO) with alternating
direction method of multipliers (ADMM).

» A, B, and C are updated in sequence using ADMM.

ADMM formulation for the update of A:

L 1 ~T T 2
minimize = HX(l) —A (CoB) H + r(A)
AA 2 F

subject to A=A

Alternating optimization step (outer iterations)

1: Initialize primal variables A, B, and C randomly.
2: Initialize dual variables A, B, and C with 0.

3: repeat

4 G+ B'BxC'C

K« X(l) (C © B)

A A — ADMM(A,A K,G)

G+ ATAxCTC

K« X(2) (C © A)

1. B,B+« ADMM(B,B,K,G)

11:

122 G« ATAxB'B

13: K+ X(3) (B © A)

14: C,€+«+ ADMM(C, €, K,G)

15: until L(X, A, B, C) ceases to improve.

© oo N o

ADMM step (inner iterations)

ADMM to update one factor matrix:

1: Input: H, U, K, G

2: Qutput: H, U

3: p < trace(G)/F

4: L < Cholesky(G + pl)

5: repeat

6: Ho+ H

77 H«L LY (K+pH+U)T
8: HeargminHr(H)—&—gHH—I:IT—&—UH%
9: U(—U—l—"l; |:|T

10: re|[H=H|Z/[[H[[?

11: s < ||H = Hol[z/||V[%

12: until r <eand s <e

Table of Contents

Accelerated AO-ADMM

Parallelization opportunities

All steps but Line 8 are either element-wise or row-wise independent.

1: Input: H, U, K, G

2: Qutput: H, U

3: p < trace(G)/F

4: L < Cholesky(G + pl)

5. repeat

6: Ho+ H

77 H«L LY (K+pH+U)T
8 H <« argmingy r(H)+ §||H— A" +U|2
9: U(—U—l—"l; |:|T

10: re|[H=H|Z/[[H[[?

11: s < ||H = Hol[z/||V[%

until r<eands<e

._\
N ..

Performance opportunities

1. The factor matrices are tall-skinny (e.g., 10°x50).
» The ADMM step will be bound by memory bandwidth.
2. Real-world tensors have non-uniform distributions of non-zeros.

» This may lead to non-uniform convergence of the factor rows
during ADMM.

3. Many constraints and regularizations naturally invoke sparsity in
the factors.

» We can exploit this sparsity during MTTKRP (in paper).

Blocked ADMM

If the proximity operator coming from r(-) is row-separable,
reformulate the ADMM problem to work on B blocks of rows:

B
minimize 2 H X1))b — Ab (CoB), H + r(Ap)
(ALAy),....(Ag,Ag)
subject to A=A ... Ag=Ag

Optimizing each block separately allows for them to converge at
different rates, while acting as a form of cache tiling.

Blocked ADMM

More simply:

ADMM

ADMM
ADMM

A 4

ADMM

ADMM

Effects of block size

The block size affects both convergence rate and computational
efficiency:
» A block size of 1 optimizes each row of H independently.

» Larger block sizes better utilize hardware resources, but should
be chosen to fit in cache.

Our evaluation uses F=50, and we experimentally found a block size
of 50 rows to be a good balance between convergence rate and
performance.

Table of Contents

Experiments

Experimental Setup

Source code:
» Modified from SPLATT 1!
» Written in C and parallelized with OpenMP
» Compiled with icc v17.0.1 and linked with Intel MKL

Machine specifications:
» 2x 10-core Intel Xeon E5-2650v3 (Haswell)
» 396GB RAM

"https://github.com/ShadenSmith/splatt

https://github.com/ShadenSmith/splatt

Convergence measurement

We measure convergence based on the relative reconstruction error:

L(X,A,B,C)

relative error = 5
| X

Termination:

» Convergence is detected when the relative error improves less
than 1070 or if we exceed 200 outer iterations.

» ADMM is limited to 50 iterations and € = 102.

Datasets

We selected four tensors from the FROSTT 2 collection based on
non-negative factorization performance:

» require a non-trivial number of iterations

» have a factorization quality that suggests a non-negative CPD is
appropriate

Dataset NNZ | J K
Reddit 95M 310K 6K 510K
NELL 143M 3M 2M 25M
Amazon 1.7B 5M 18M 2M
Patents 3.5B 46 240K 240K

http://frostt.io/

http://frostt.io/

Relative Factorization Costs

Fraction of time spent in MTTKRP and ADMM during a rank-50
non-negative factorization:

B MTTKRP £Z4 ADMM [OTHER

Z

1.0

o o o
> L) ®

Fraction of factorization time
o
N

o
)

Reddit NELL Amazon Patents

Parallel Scalability

Blocked ADMM improves speedup when the factorization is

dominated by ADMM:

20

Reddit
NELL

Patents e
ideal 7

1111

Speedup
=
=)

©
N
N

=N

Amazon L7

8 10
Threads

Baseline

20

20

Speedup
[
)

©

=N A

1111

Reddit
NELL
Amazon
Patents
ideal .

12 4

8 10
Threads

Blocked

20

Convergence: Reddit

Blocking results in faster per-iteration runtimes and also converges in
fewer iterations.

%=X base %=X base
0.89 < o—o blocked 0.89 x o—o blocked
O a
. 1
. 1
. . = 1
50.88f | S0.88 |
M [E '
Q . (1) 1
? 9 A
2 2 .
% 0.87 . 7 0.87f v
Kl S] X3
© . 3 .
b ‘e - OK~ =,
086 0000088 e s e e 36 2 e s 086 R CT VANV
0.85 0.85
10 20 30 40 50 60 70 80 90 5 10 15 20 25 30
Time (s)

35 40 45
Outer iteration

Convergence: NELL

iterations to achieve a lower error.

Convergence is 3.7x faster with blocking, despite using additional

0.62

Relative error
° 4
] 3
® =)

°
«
)

0.54

%

e

@

%=X base
o—o blocked

X
.
.
.
.
.
)
.
.
.
.
)

[
.
.
0y
.

“--x.-x-....x_____x_

Kok XK
Q

feeisce]
©
500

1000 1500

2000 2500 3000
Time (s)

0.621 X %=X base
1 o—o blocked
1
0.60
N]
5]
t]
£]
o 1
>o058f |
- 3
5 .
Q .
= K"Q e
0.56 i TV
o,
0 0 0 0 ¢
0.54 ©
5 10 15 20

25 30
Outer iteration

Convergence: Amazon

Both formulations exceed the maximum of 200 outer iterations, but
the blocked formulation achieves a lower error in less time.

%=X base b »*=x base
oot} o—o blocked 0-69/f o—o blocked
' 1

o.68/% 0.68
" . N \
[. [v
£ “ £ \
G 0.67| \s G 0.67| s
1] Y5 o .
> . > ..
B Memax s Mo muy
So0.66f ©° * 50.66 .
2 T NKaaa 2 "NRanyan

0.65 ° ".."x 0.65 ° 'X."x

’ @ T e . ? -.%'-x-..x.
o
°. o
0.64 R A SN 0.64 O—0—o— oo
2000 4000 6000 8000 10000 12000 0 50 100 150 200
Time (s)

Outer iteration

Convergence: Patents

Per-iteration runtimes are largely unaffected, as Patents is
dominated by MTTKRP time. However, fewer iterations are required

0.570 *=x base 0.570 %=X base
% o—o blocked] o—o blocked
0.565 0.565 ||
' 1
5 \ 5 |
£ 0.560: ¢ £ 0.560 1
o o o b
o . [.
2 0.555| 1 2 0.555(¢
= . =1 .
] .] .
k- v a o "
& 0.550 *, & 0.550| °
- Q, *.n
%'-xg.p %"Q-ow
0.545 O30t = b =t = X 0.545 H O 0 n5 2 5 Km = 5 e
0.540 0.540
500 1000 1500 2000 2500 3000 3500 4000 4500 20 40 60 80 100 120 140
Time (s)

Outer iteration

Table of Contents

Conclusions

Wrapping up

Blocked ADMM accelerates constrained tensor factorization in two
ways:
» Optimizing blocks independently saves computation on the
“simple” rows and better optimizes “hard” rows.

» Blocks can be kept in cache during ADMM, saving memory
bandwidth.

Also in the paper:

» MTTKRP can be accelerated by exploiting the sparsity that
dynamically evolves in the factors.

» An additional ~ 2x speedup is achieved.

Future work:
» Analytical model for selecting block sizes.

» Automatic runtime selection of data structure for sparse factors.

Reproducibility

All of our work is open source (in the wip/ao-admm branch for now):

https://github.com/ShadenSmith/splatt

Datasets are freely available:

http://frostt.io/

https://github.com/ShadenSmith/splatt
http://frostt.io/

Backup Slides

Matricized tensor times Khatri-Rao product

MTTKRP is a key kernel for computing the CPD:
K=Xy(CoB)

(CoB)

j.l

Jx K

Notation
X(q) unfolds a tensor.
(C ©® B) is the Khatri-Rao (columnwise Kronecker) product.

Sparse MTTKRP

Convergence on Reddit with F =100 and r(-) = 107%| - ||1.

0.97 *-xX base
AN -0 dense
"oy
0.96, # % CSR |
. v ~-+ CSR-H
50.95»: !
o v X
£0.94f w0 vy
— AY
S 003l L
093 "Liia % o
0.92} | .~]
Ve R DT O = O - @~ @ = = = K= = X
0.91 ‘ ‘ ‘ ‘]
0 100 200 300 400 500

Time (s)

Compressed sparse fiber (CSF)

» Modes are recursively compressed.
» Paths from roots to leaves encode non-zeros.

» The tree structure encodes opportunities for savings.

-

Al

[== W=

(PP PPN = =]

(PR == = = =]

r
&

MTTKRP with CSF

/+ foreach outer slice x/
for(int i=0; i < I; ++i) {
/+ foreach fiber in slice x/
for(int s = s_ptr[i]; s < s_ptr[i+1]; ++s) {
accum [0:r] = 0;

/+ foreach nnz in fiber x/

for(int nnz = f_ptr[s]; nnz < f_ptr[s+1]; ++nnz) {
int k = f_ids[nnz];
accum [0:r] += vals[nnz] % C[k][0:r];

}

int j = s_ids[s];
A[i][0:r] += accum[0:r] * B[s][0:r];

	Introduction
	Accelerated AO-ADMM
	Experiments
	Conclusions

