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Tensor Introduction

» Tensors are the generalization of matrices to higher dimensions.

» Allow us to represent and analyze multi-dimensional data.

» Applications in precision healthcare, cybersecurity, recommender
systems, ...
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Canonical polyadic decomposition (CPD)

The CPD models a tensor as the summation of rank-1 tensors.
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Notation
A c R™*F B e R*F, and C € R¥*F denote the factor matrices for a 3D
tensor.




Alternating least squares (ALS)

The CPD is most commonly computed with ALS:

Algorithm 1 CPD-ALS

1: while not converged do

2 AT« (CTCxBB)! (Xy(CoB))’

3 BT« (CTC+ATA) (X;»(CoA))"

4 CT+ (BTBxATA) ! (X3(BOA))"
~—_———

Normal equations MTTKRP

5. end while

Notation
* denotes the Hadamard (elementwise) product.




Constrained factorization

We often want to impose some constraints or regularizations on the
factorization:

mi/?iBmcize L(X,A,B,C)+ r(A)+ r(B)+ r(C)
o Loss Constraints/Regularizations
Example

Non-negative factorizations use an indicator function for R, :

r(A):{o if A>0

oo otherwise




AO-ADMM [Huang & Sidiropoulos '15]

AO-ADMM combines alternating optimization (AO) with alternating
direction method of multipliers (ADMM).

» A, B, and C are updated in sequence using ADMM.



AO-ADMM [Huang & Sidiropoulos '15]

AO-ADMM combines alternating optimization (AO) with alternating
direction method of multipliers (ADMM).

» A, B, and C are updated in sequence using ADMM.

ADMM formulation for the update of A:

L 1 ~T T 2
minimize = HX(l) —A (CoB) H + r(A)
AA 2 F

subject to A=A



Alternating optimization step (outer iterations)

1: Initialize primal variables A, B, and C randomly.
2: Initialize dual variables A, B, and C with 0.

3: repeat

4 G+ B'BxC'C

K« X(l) (C © B)

A A — ADMM(A,A K,G)

G+ ATAxCTC

K« X(2) (C © A)

1.  B,B+« ADMM(B,B,K,G)

11:

122 G« ATAxB'B

13: K+ X(3) (B © A)

14:  C,€+«+ ADMM(C, €, K,G)

15: until L(X, A, B, C) ceases to improve.

© oo N o




ADMM step (inner iterations)

ADMM to update one factor matrix:

1: Input: H, U, K, G

2: Qutput: H, U

3: p < trace(G)/F

4: L < Cholesky(G + pl)

5: repeat

6: Ho+ H

77 H«L LY (K+pH+U)T
8: HeargminHr(H)—&—gHH—I:IT—&—UH%
9: U(—U—l—"l; |:|T

10: re|[H=H|Z/[[H[[?

11: s < ||H = Hol[z/||V[%

12: until r <eand s <e




Table of Contents

Accelerated AO-ADMM



Parallelization opportunities

All steps but Line 8 are either element-wise or row-wise independent.

1: Input: H, U, K, G

2: Qutput: H, U

3: p < trace(G)/F

4: L < Cholesky(G + pl)

5. repeat

6: Ho+ H

77 H«L LY (K+pH+U)T
8 H <« argmingy r(H)+ §||H— A" +U|2
9: U(—U—l—"l; |:|T

10: re|[H=H|Z/[[H[[?

11: s < ||H = Hol[z/||V[%

until r<eands<e

._\
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Performance opportunities

1. The factor matrices are tall-skinny (e.g., 10°x50).
» The ADMM step will be bound by memory bandwidth.
2. Real-world tensors have non-uniform distributions of non-zeros.

» This may lead to non-uniform convergence of the factor rows
during ADMM.

3. Many constraints and regularizations naturally invoke sparsity in
the factors.

» We can exploit this sparsity during MTTKRP (in paper).



Blocked ADMM

If the proximity operator coming from r(-) is row-separable,
reformulate the ADMM problem to work on B blocks of rows:

B
minimize 2 H X1))b — Ab (CoB), H + r(Ap)
(ALAy),....(Ag,Ag)
subject to A=A ... Ag=Ag

Optimizing each block separately allows for them to converge at
different rates, while acting as a form of cache tiling.



Blocked ADMM

More simply:

ADMM

ADMM
ADMM

A 4

ADMM

ADMM




Effects of block size

The block size affects both convergence rate and computational
efficiency:
» A block size of 1 optimizes each row of H independently.

» Larger block sizes better utilize hardware resources, but should
be chosen to fit in cache.

Our evaluation uses F=50, and we experimentally found a block size
of 50 rows to be a good balance between convergence rate and
performance.
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Experimental Setup

Source code:
» Modified from SPLATT 1!
» Written in C and parallelized with OpenMP
» Compiled with icc v17.0.1 and linked with Intel MKL

Machine specifications:
» 2x 10-core Intel Xeon E5-2650v3 (Haswell)
» 396GB RAM

"https://github.com/ShadenSmith/splatt


https://github.com/ShadenSmith/splatt

Convergence measurement

We measure convergence based on the relative reconstruction error:

L(X,A,B,C)

relative error = 5
| X

Termination:

» Convergence is detected when the relative error improves less
than 1070 or if we exceed 200 outer iterations.

» ADMM is limited to 50 iterations and € = 102.



Datasets

We selected four tensors from the FROSTT 2 collection based on
non-negative factorization performance:

» require a non-trivial number of iterations

» have a factorization quality that suggests a non-negative CPD is
appropriate

Dataset NNZ | J K
Reddit 95M 310K 6K 510K
NELL 143M 3M 2M  25M
Amazon 1.7B 5M  18M 2M
Patents 3.5B 46 240K 240K

http://frostt.io/


http://frostt.io/

Relative Factorization Costs

Fraction of time spent in MTTKRP and ADMM during a rank-50
non-negative factorization:

B MTTKRP £Z4 ADMM [ OTHER

Z

1.0

o o o
> L) ®

Fraction of factorization time
o
N

o
)

Reddit NELL Amazon Patents



Parallel Scalability

Blocked ADMM improves speedup when the factorization is

dominated by ADMM:
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Convergence: Reddit

Blocking results in faster per-iteration runtimes and also converges in
fewer iterations.
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Convergence: NELL

iterations to achieve a lower error.

Convergence is 3.7x faster with blocking, despite using additional
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Convergence: Amazon

Both formulations exceed the maximum of 200 outer iterations, but
the blocked formulation achieves a lower error in less time.
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Convergence: Patents

Per-iteration runtimes are largely unaffected, as Patents is
dominated by MTTKRP time. However, fewer iterations are required
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Wrapping up

Blocked ADMM accelerates constrained tensor factorization in two
ways:
» Optimizing blocks independently saves computation on the
“simple” rows and better optimizes “hard” rows.

» Blocks can be kept in cache during ADMM, saving memory
bandwidth.

Also in the paper:

» MTTKRP can be accelerated by exploiting the sparsity that
dynamically evolves in the factors.

» An additional ~ 2x speedup is achieved.

Future work:
» Analytical model for selecting block sizes.

» Automatic runtime selection of data structure for sparse factors.



Reproducibility

All of our work is open source (in the wip/ao-admm branch for now):

https://github.com/ShadenSmith/splatt

Datasets are freely available:

http://frostt.io/


https://github.com/ShadenSmith/splatt
http://frostt.io/
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Matricized tensor times Khatri-Rao product

MTTKRP is a key kernel for computing the CPD:
K=Xy(CoB)

(CoB)

j.l

Jx K

Notation
X(q) unfolds a tensor.
(C ©® B) is the Khatri-Rao (columnwise Kronecker) product.




Sparse MTTKRP

Convergence on Reddit with F =100 and r(-) = 107%| - ||1.
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Compressed sparse fiber (CSF)

» Modes are recursively compressed.
» Paths from roots to leaves encode non-zeros.

» The tree structure encodes opportunities for savings.
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MTTKRP with CSF

/+ foreach outer slice x/
for(int i=0; i < I; ++i) {
/+ foreach fiber in slice x/
for(int s = s_ptr[i]; s < s_ptr[i+1]; ++s) {
accum [0:r] = 0;

/+ foreach nnz in fiber x/

for(int nnz = f_ptr[s]; nnz < f_ptr[s+1]; ++nnz) {
int k = f_ids[nnz];
accum [0:r] += vals[nnz] % C[k][0:r];

}

int j = s_ids[s];
A[i][0:r] += accum[0:r] * B[s][0:r];
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