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Tensor Introduction

I Tensors are the generalization of matrices to higher dimensions.
I Allow us to represent and analyze multi-dimensional data.
I Applications in precision healthcare, cybersecurity, recommender

systems, . . .
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Canonical polyadic decomposition (CPD)

The CPD models a tensor as the summation of rank-1 tensors.

≈ + · · ·+

minimize
A,B,C

L(X ,A,B,C) =

∥∥∥∥∥X −
F∑

f=1

A(:, f ) ◦ B(:, f ) ◦ C(:, f )

∥∥∥∥∥
2

F

Notation
A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F denote the factor matrices for a 3D
tensor.
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Alternating least squares (ALS)

The CPD is most commonly computed with ALS:

Algorithm 1 CPD-ALS

1: while not converged do

2: AT ← (CTC ∗ BTB)−1
(
X(1)(C � B)

)T
3: BT ← (CTC ∗ ATA)−1

(
X(2)(C � A)

)T
4: CT ← (BTB ∗ ATA)−1︸ ︷︷ ︸

Normal equations

(
X(3)(B � A)

)T︸ ︷︷ ︸
MTTKRP

5: end while

Notation
∗ denotes the Hadamard (elementwise) product.
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Constrained factorization

We often want to impose some constraints or regularizations on the
factorization:

minimize
A,B,C

L(X ,A,B,C)︸ ︷︷ ︸
Loss

+ r(A) + r(B) + r(C)︸ ︷︷ ︸
Constraints/Regularizations

Example
Non-negative factorizations use an indicator function for R+:

r(A) =

{
0 if A ≥ 0

∞ otherwise
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AO-ADMM [Huang & Sidiropoulos ’15]

AO-ADMM combines alternating optimization (AO) with alternating
direction method of multipliers (ADMM).

I A, B, and C are updated in sequence using ADMM.

ADMM formulation for the update of A:

minimize
A,Ã

1

2

∥∥∥X(1) − Ã
T

(C � B)T
∥∥∥2
F

+ r(A)

subject to A = Ã
T
.
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T
.

6 / 26



Alternating optimization step (outer iterations)

1: Initialize primal variables A, B, and C randomly.
2: Initialize dual variables Â, B̂, and Ĉ with 0.
3: repeat
4: G← BTB ∗ CTC
5: K← X(1) (C � B)

6: A, Â← ADMM(A, Â,K,G)
7:

8: G← ATA ∗ CTC
9: K← X(2) (C � A)

10: B, B̂← ADMM(B, B̂,K,G)
11:

12: G← ATA ∗ BTB
13: K← X(3) (B � A)

14: C, Ĉ← ADMM(C, Ĉ,K,G)
15: until L(X ,A,B,C) ceases to improve.
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ADMM step (inner iterations)

ADMM to update one factor matrix:

1: Input: H, U, K, G
2: Output: H, U
3: ρ← trace(G)/F
4: L← Cholesky(G + ρI)
5: repeat
6: H0 ← H
7: H̃← L−TL−1 (K + ρ(H + U))T

8: H← argminH r(H) + ρ
2 ||H− H̃

T
+ U||2F

9: U← U + H− H̃
T

10: r ← ||H− H̃
T ||2F/||H||2F

11: s ← ||H−H0||2F/||U||2F
12: until r < ε and s < ε
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Parallelization opportunities

All steps but Line 8 are either element-wise or row-wise independent.

1: Input: H, U, K, G
2: Output: H, U
3: ρ← trace(G)/F
4: L← Cholesky(G + ρI)
5: repeat
6: H0 ← H
7: H̃← L−TL−1 (K + ρ(H + U))T

8: H← argminH r(H) + ρ
2 ||H− H̃

T
+ U||2F

9: U← U + H− H̃
T

10: r ← ||H− H̃
T ||2F/||H||2F

11: s ← ||H−H0||2F/||U||2F
12: until r < ε and s < ε
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Performance opportunities

1. The factor matrices are tall-skinny (e.g., 106×50).
I The ADMM step will be bound by memory bandwidth.

2. Real-world tensors have non-uniform distributions of non-zeros.
I This may lead to non-uniform convergence of the factor rows

during ADMM.

3. Many constraints and regularizations naturally invoke sparsity in
the factors.

I We can exploit this sparsity during MTTKRP (in paper).
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Blocked ADMM

If the proximity operator coming from r(·) is row-separable,
reformulate the ADMM problem to work on B blocks of rows:

minimize
(A1,Ã1),...,(AB ,ÃB)

B∑
b=1

1

2

∥∥∥(X(1))b − Ã
T
b (C � B)Tb

∥∥∥2
F

+ r(Ab)

subject to A1 = Ã1, . . . ,AB = ÃB .

Optimizing each block separately allows for them to converge at
different rates, while acting as a form of cache tiling.
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Blocked ADMM

More simply:
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Effects of block size

The block size affects both convergence rate and computational
efficiency:

I A block size of 1 optimizes each row of H independently.

I Larger block sizes better utilize hardware resources, but should
be chosen to fit in cache.

Our evaluation uses F=50, and we experimentally found a block size
of 50 rows to be a good balance between convergence rate and
performance.
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Experimental Setup

Source code:

I Modified from SPLATT 1

I Written in C and parallelized with OpenMP

I Compiled with icc v17.0.1 and linked with Intel MKL

Machine specifications:

I 2× 10-core Intel Xeon E5-2650v3 (Haswell)

I 396GB RAM

1https://github.com/ShadenSmith/splatt
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Convergence measurement

We measure convergence based on the relative reconstruction error:

relative error =
L(X ,A,B,C)

‖X‖2F
.

Termination:

I Convergence is detected when the relative error improves less
than 10−6 or if we exceed 200 outer iterations.

I ADMM is limited to 50 iterations and ε = 10−2.
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Datasets

We selected four tensors from the FROSTT 2 collection based on
non-negative factorization performance:

I require a non-trivial number of iterations

I have a factorization quality that suggests a non-negative CPD is
appropriate

Dataset NNZ I J K
Reddit 95M 310K 6K 510K
NELL 143M 3M 2M 25M
Amazon 1.7B 5M 18M 2M
Patents 3.5B 46 240K 240K

2http://frostt.io/
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Relative Factorization Costs

Fraction of time spent in MTTKRP and ADMM during a rank-50
non-negative factorization:
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Parallel Scalability

Blocked ADMM improves speedup when the factorization is
dominated by ADMM:
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Convergence: Reddit

Blocking results in faster per-iteration runtimes and also converges in
fewer iterations.
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Convergence: NELL

Convergence is 3.7× faster with blocking, despite using additional
iterations to achieve a lower error.
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Convergence: Amazon

Both formulations exceed the maximum of 200 outer iterations, but
the blocked formulation achieves a lower error in less time.
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Convergence: Patents

Per-iteration runtimes are largely unaffected, as Patents is
dominated by MTTKRP time. However, fewer iterations are required.
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Wrapping up

Blocked ADMM accelerates constrained tensor factorization in two
ways:

I Optimizing blocks independently saves computation on the
“simple” rows and better optimizes “hard” rows.

I Blocks can be kept in cache during ADMM, saving memory
bandwidth.

Also in the paper:

I MTTKRP can be accelerated by exploiting the sparsity that
dynamically evolves in the factors.

I An additional ∼ 2× speedup is achieved.

Future work:

I Analytical model for selecting block sizes.

I Automatic runtime selection of data structure for sparse factors.
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Reproducibility

All of our work is open source (in the wip/ao-admm branch for now):

https://github.com/ShadenSmith/splatt

Datasets are freely available:

http://frostt.io/
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Matricized tensor times Khatri-Rao product

MTTKRP is a key kernel for computing the CPD:

K = X(1) (C � B)

X(1)

(C � B)

IK =

FJ × K

J × K

Notation
X(1) unfolds a tensor.
(C � B) is the Khatri-Rao (columnwise Kronecker) product.
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Sparse MTTKRP

Convergence on Reddit with F = 100 and r(·) = 10−1|| · ||1.
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Compressed sparse fiber (CSF)

I Modes are recursively compressed.

I Paths from roots to leaves encode non-zeros.

I The tree structure encodes opportunities for savings.
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MTTKRP with CSF

/∗ f o r e a c h ou t e r s l i c e ∗/
f o r ( i n t i =0; i < I ; ++i ) {

/∗ f o r e a c h f i b e r i n s l i c e ∗/
f o r ( i n t s = s p t r [ i ] ; s < s p t r [ i +1] ; ++s ) {

accum [ 0 : r ] = 0 ;

/∗ f o r e a c h nnz i n f i b e r ∗/
f o r ( i n t nnz = f p t r [ s ] ; nnz < f p t r [ s +1] ; ++nnz ) {

i n t k = f i d s [ nnz ] ;
accum [ 0 : r ] += v a l s [ nnz ] ∗ C[ k ] [ 0 : r ] ;

}

i n t j = s i d s [ s ] ;
A [ i ] [ 0 : r ] += accum [ 0 : r ] ∗ B[ s ] [ 0 : r ] ;

}
}
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