Constrained Tensor Factorization with Accelerated AO-ADMM

Shaden Smith^{1*}, Alec Beri², and George Karypis¹

¹Department of Computer Science & Engineering, University of Minnesota ²Department of Computer Science, University of Maryland *shaden@cs.umn.edu

Table of Contents

Introduction

Accelerated AO-ADMM

Experiments

Conclusions

Tensor Introduction

- ► Tensors are the generalization of matrices to higher dimensions.
- ► Allow us to represent and analyze multi-dimensional data.
- Applications in precision healthcare, cybersecurity, recommender systems, . . .

Canonical polyadic decomposition (CPD)

The CPD models a tensor as the summation of rank-1 tensors.

Notation $\mathbf{A} \in \mathbb{R}^{I \times F}$, $\mathbf{B} \in \mathbb{R}^{J \times F}$, and $\mathbf{C} \in \mathbb{R}^{K \times F}$ denote the factor matrices for a 3D tensor.

Alternating least squares (ALS)

The CPD is most commonly computed with ALS:

Algorithm 1 CPD-ALS

Notation

* denotes the Hadamard (elementwise) product.

Constrained factorization

We often want to impose some constraints or regularizations on the factorization:

AO-ADMM [Huang & Sidiropoulos '15]

AO-ADMM combines alternating optimization (AO) with alternating direction method of multipliers (ADMM).

► A, B, and C are updated in sequence using ADMM.

AO-ADMM [Huang & Sidiropoulos '15]

AO-ADMM combines alternating optimization (AO) with alternating direction method of multipliers (ADMM).

► A, B, and C are updated in sequence using ADMM.

ADMM formulation for the update of **A**:

minimize

$$\mathbf{A}, \tilde{\mathbf{A}}$$
 $\frac{1}{2} \| \mathbf{X}_{(1)} - \tilde{\mathbf{A}}^T (\mathbf{C} \odot \mathbf{B})^T \|_F^2 + r(\mathbf{A})$
subject to
 $\mathbf{A} = \tilde{\mathbf{A}}^T.$

Alternating optimization step (outer iterations)

- 1: Initialize primal variables **A**, **B**, and **C** randomly.
- 2: Initialize dual variables \hat{A} , \hat{B} , and \hat{C} with 0.
- 11:
- 12: $\mathbf{G} \leftarrow \mathbf{A}^T \mathbf{A} * \mathbf{B}^T \mathbf{B}$
- 13: $\mathbf{K} \leftarrow \mathbf{X}_{(3)} (\mathbf{B} \odot \mathbf{A})$
- 14: $\mathbf{C}, \hat{\mathbf{C}} \leftarrow \text{ADMM}(\mathbf{C}, \hat{\mathbf{C}}, \mathbf{K}, \mathbf{G})$
- 15: **until** $\mathcal{L}(\mathcal{X}, \mathbf{A}, \mathbf{B}, \mathbf{C})$ ceases to improve.

ADMM step (inner iterations)

ADMM to update one factor matrix:

- 1: Input: H, U, K, G
- 2: Output: H, U
- 3: $\rho \leftarrow \text{trace}(\mathbf{G})/F$
- 4: $\mathbf{L} \leftarrow \text{Cholesky}(\mathbf{G} + \rho \mathbf{I})$
- 5: repeat
- $\mathbf{H}_0 \leftarrow \mathbf{H}$ 6:
- $\tilde{\mathbf{H}} \leftarrow \mathbf{L}^{-T} \mathbf{L}^{-1} (\mathbf{K} + \rho (\mathbf{H} + \mathbf{U}))^T$ 7:
- $\mathbf{H} \leftarrow \operatorname{argmin}_{\mathbf{H}} r(\mathbf{H}) + \frac{\rho}{2} ||\mathbf{H} \tilde{\mathbf{H}}^T + \mathbf{U}||_{\mathcal{F}}^2$ 8:
- 9: $\mathbf{U} \leftarrow \mathbf{U} + \mathbf{H} \mathbf{\tilde{H}}^T$ 10: $r \leftarrow ||\mathbf{H} \mathbf{\tilde{H}}^T||_F^2 / ||\mathbf{H}||_F^2$
- $s \leftarrow ||\mathbf{H} \mathbf{H}_0||_F^2 / ||\mathbf{U}||_F^2$ 11:

12: **until** $r < \epsilon$ and $s < \epsilon$

Table of Contents

Introduction

Accelerated AO-ADMM

Experiments

Conclusions

Parallelization opportunities

All steps but Line 8 are either element-wise or row-wise independent.

- 1: Input: H, U, K, G
- 2: Output: H, U
- 3: $\rho \leftarrow \mathsf{trace}(\mathbf{G})/F$
- 4: $\mathbf{L} \leftarrow \mathsf{Cholesky}(\mathbf{G} + \rho \mathbf{I})$
- 5: repeat
- 6: $\mathbf{H}_0 \leftarrow \mathbf{H}$

7:
$$\tilde{\mathbf{H}} \leftarrow \mathbf{L}^{-T} \mathbf{L}^{-1} (\mathbf{K} + \rho (\mathbf{H} + \mathbf{U}))^{T}$$

8:
$$\mathbf{H} \leftarrow \operatorname{argmin}_{\mathbf{H}} \mathbf{r}(\mathbf{H}) + \frac{\rho}{2} ||\mathbf{H} - \tilde{\mathbf{H}}' + \mathbf{U}||_{F}^{2}$$

9:
$$\mathbf{U} \leftarrow \mathbf{U} + \mathbf{H} = \tilde{\mathbf{H}}$$

10:
$$r \leftarrow ||\mathbf{H} - \tilde{\mathbf{H}}'||_F^2 / ||\mathbf{H}||_F^2$$

11:
$$s \leftarrow ||\mathbf{H} - \mathbf{H}_0||_F^2 / ||\mathbf{U}||_F^2$$

12: **until** $r < \epsilon$ and $s < \epsilon$

Performance opportunities

- 1. The factor matrices are tall-skinny (e.g., $10^6 \times 50$).
 - ► The ADMM step will be bound by memory bandwidth.
- 2. Real-world tensors have non-uniform distributions of non-zeros.
 - This may lead to non-uniform convergence of the factor rows during ADMM.
- 3. Many constraints and regularizations naturally invoke sparsity in the factors.
 - ► We can exploit this sparsity during MTTKRP (*in paper*).

Blocked ADMM

If the proximity operator coming from $r(\cdot)$ is row-separable, reformulate the ADMM problem to work on *B* blocks of rows:

$$\begin{array}{ll} \underset{(\mathbf{A}_{1},\tilde{\mathbf{A}}_{1}),\ldots,(\mathbf{A}_{B},\tilde{\mathbf{A}}_{B})}{\text{minimize}} & \sum_{b=1}^{B} \frac{1}{2} \left\| (\mathbf{X}_{(1)})_{b} - \tilde{\mathbf{A}}_{b}^{T} (\mathbf{C} \odot \mathbf{B})_{b}^{T} \right\|_{F}^{2} + r(\mathbf{A}_{b}) \\ \\ \text{subject to} & \mathbf{A}_{1} = \tilde{\mathbf{A}}_{1},\ldots,\mathbf{A}_{B} = \tilde{\mathbf{A}}_{B}. \end{array}$$

Optimizing each block separately allows for them to converge at different rates, while acting as a form of cache tiling.

Blocked ADMM

More simply:

The block size affects both convergence rate and computational efficiency:

- ► A block size of 1 optimizes each row of **H** independently.
- Larger block sizes better utilize hardware resources, but should be chosen to fit in cache.

Our evaluation uses F=50, and we experimentally found a block size of 50 rows to be a good balance between convergence rate and performance.

Table of Contents

Introduction

Accelerated AO-ADMM

Experiments

Conclusions

Experimental Setup

Source code:

- Modified from SPLATT¹
- Written in C and parallelized with OpenMP
- ► Compiled with icc v17.0.1 and linked with Intel MKL

Machine specifications:

- ► 2× 10-core Intel Xeon E5-2650v3 (Haswell)
- ▶ 396GB RAM

¹https://github.com/ShadenSmith/splatt

Convergence measurement

We measure convergence based on the relative reconstruction error:

$$ext{relative error} = rac{\mathcal{L}(oldsymbol{\mathcal{X}}, oldsymbol{\mathsf{A}}, oldsymbol{\mathsf{B}}, oldsymbol{\mathsf{C}})}{\left\|oldsymbol{\mathcal{X}}
ight\|_F^2}.$$

Termination:

- ► Convergence is detected when the relative error improves less than 10⁻⁶ or if we exceed 200 outer iterations.
- ADMM is limited to 50 iterations and $\epsilon = 10^{-2}$.

Datasets

We selected four tensors from the FROSTT 2 collection based on non-negative factorization performance:

- require a non-trivial number of iterations
- have a factorization quality that suggests a non-negative CPD is appropriate

Dataset	NNZ	I	J	K
Reddit	95M	310K	6K	510K
NELL	143M	3M	2M	25M
Amazon	1.7B	5M	18M	2M
Patents	3.5B	46	240K	240K

²http://frostt.io/

Relative Factorization Costs

Fraction of time spent in MTTKRP and ADMM during a rank-50 non-negative factorization:

Parallel Scalability

Blocked ADMM improves speedup when the factorization is dominated by ADMM:

Convergence: Reddit

Blocking results in faster per-iteration runtimes and also converges in fewer iterations.

Convergence: NELL

Convergence is $3.7 \times$ faster with blocking, despite using additional iterations to achieve a lower error.

Both formulations exceed the maximum of 200 outer iterations, but the blocked formulation achieves a lower error in less time.

Convergence: Patents

Per-iteration runtimes are largely unaffected, as Patents is dominated by MTTKRP time. However, fewer iterations are required.

Table of Contents

Introduction

Accelerated AO-ADMM

Experiments

Conclusions

Blocked ADMM accelerates constrained tensor factorization in two ways:

- Optimizing blocks independently saves computation on the "simple" rows and better optimizes "hard" rows.
- Blocks can be kept in cache during ADMM, saving memory bandwidth.

Also in the paper:

- MTTKRP can be accelerated by exploiting the sparsity that dynamically evolves in the factors.
- An additional $\sim 2 \times$ speedup is achieved.

Future work:

- ► Analytical model for selecting block sizes.
- ► Automatic runtime selection of data structure for sparse factors.

Reproducibility

All of our work is open source (in the wip/ao-admm branch for now):

https://github.com/ShadenSmith/splatt

Datasets are freely available:

http://frostt.io/

Backup Slides

Matricized tensor times Khatri-Rao product

Notation $X_{(1)}$ unfolds a tensor. ($C \odot B$) is the Khatri-Rao (columnwise Kronecker) product.

Sparse MTTKRP

Convergence on Reddit with F = 100 and $r(\cdot) = 10^{-1} || \cdot ||_1$.

Compressed sparse fiber (CSF)

- ► Modes are recursively compressed.
- ▶ Paths from roots to leaves encode non-zeros.
- The tree structure encodes opportunities for savings.

MTTKRP with CSF

```
/* foreach outer slice */
for (int i=0; i < I; ++i) {
  /* foreach fiber in slice */
  for (int s = s_ptr[i]; s < s_ptr[i+1]; ++s) {
    \operatorname{accum}[0:r] = 0;
    /* foreach nnz in fiber */
    for (int nnz = f_ptr[s]; nnz < f_ptr[s+1]; ++nnz) {
      int k = f_i ds [nnz];
      accum[0:r] += vals[nnz] * C[k][0:r];
    }
    int j = s_i ds[s];
    A[i][0:r] += accum[0:r] * B[s][0:r];
  }
```