
HPC Formulations of Optimization Algorithms
for Tensor Completion

Shaden Smitha,∗, Jongsoo Parkb, George Karypisa

aDepartment of Computer Science & Engineering, University of Minnesota
bFacebook

Abstract

Tensor completion is a powerful tool used to estimate or recover missing values
in multi-way data. It has seen great success in domains such as product recom-
mendation and healthcare. Tensor completion is most often accomplished via
low-rank sparse tensor factorization, a computationally expensive non-convex
optimization problem which has only recently been studied in the context of
parallel computing. In this work, we study three optimization algorithms that
have been successfully applied to tensor completion: alternating least squares
(ALS), stochastic gradient descent (SGD), and coordinate descent (CCD++).
We explore opportunities for parallelism on shared- and distributed-memory
systems and address challenges such as memory- and operation-efficiency, load
balance, cache locality, and communication. Among our advancements are a
communication-efficient CCD++ algorithm, an ALS algorithm rich in level-3
BLAS routines, and an SGD algorithm which combines stratification with asyn-
chronous communication. Furthermore, we show that introducing randomiza-
tion during ALS and CCD++ can accelerate convergence. We evaluate our par-
allel formulations on a variety of real datasets on a modern supercomputer and
demonstrate speedups through 16384 cores. These improvements reduce time-
to-solution from hours to seconds on real-world datasets. We show that after
our optimizations, ALS is advantageous on parallel systems of small-to-moderate
scale, while both ALS and CCD++ provide the lowest time-to-solution on large-
scale distributed systems.

1. Introduction

Many domains rely on multi-way data, which are variables that interact
in three or more dimensions, or modes. An electronic health record is an in-
teraction between variables such as a patient, symptoms, diagnosis, medical

∗Corresponding author
Email addresses: shaden@cs.umn.edu (Shaden Smith), jongsoo@fb.com (Jongsoo Park),

karypis@cs.umn.edu (George Karypis)
Jongsoo Park was located at and supported by Intel Parallel Computing Lab at the time

of submission.

Preprint submitted to Elsevier December 15, 2017

procedures, and outcome. Similarly, how much a customer will like a product is
an interaction between the customer, product, and the context in which the pur-
chase occurred (e.g., date of purchase or location). Analyzing multi-way data
can provide valuable insights about the underlying relationships of the differ-
ent variables that are involved. Utilizing these insights, a doctor would be more
equipped to provide a successful treatment and a retailer would be able to better
recommend products that meet the customer’s needs and preferences. Tensors
are a natural way of representing multi-way data. Tensors are the generaliza-
tion of matrices to more than two modes. Tensor completion is the problem of
estimating or recovering missing values of a tensor. For example, discovering
phenotypes in electronic health records is improved by tensor completion due
to missing and noisy data [35]. Similarly, predicting how a customer will rate a
product under some context can be thought of as estimating a missing value in
a tensor [26].

Multi-way data analysis is based on the assumption that the data of interest
follows a low-rank model that can be discovered. Tensor factorization is a
technique that reduces a tensor to a low-rank representation, which can then be
used by applications or domain experts. The task of tensor completion is often
accomplished by first finding a low-rank tensor factorization for the observed
data, and if a low-rank model exists, then using it to predict the unobserved
data. A subtle, but important constraint is that the factorization must only
capture the non-zero (or observed) entries of the tensor. The remaining entries
are treated as missing values, not actual zeros as is often the case in other sparse
tensor and matrix operations. This is because a factorization that treats missing
entries as zero-valued would simply learn to estimate unobserved entries as zero.

Tensor completion is challenging on modern processors for two reasons.
First, floating point processing rates are much higher than memory bandwidth.
Insufficient memory bandwidth is detrimental because only a small amount of
work is performed for each non-zero, and accessing each non-zero involves many
indices. Furthermore, the few computations that are performed depend on the
unstructured sparsity pattern of the observed data, leading to poor cache local-
ity and increased pressure on memory bandwidth. Second, tensors often have
a combination of long, sparse modes (e.g., patients or customers) and short,
dense modes (e.g., medical procedures or temporal information). Scalability in
the presence of highly varied mode lengths requires attention to load balance,
degree of parallelism, and communication. This challenge is largely absent in
matrix completion, as the number of rows and columns is usually large.

The high performance computing community has addressed scalability chal-
lenges with respect to traditional tensor factorizations, for both shared-memory [1,
33, 30, 18, 14] and distributed-memory [6, 15, 31] systems. However, the tech-
niques and optimizations that underlie these methods cannot be directly applied
to the problem of tensor completion due to the treatment of missing entries.

In this work, we explore high performance tensor completion with three pop-
ular optimizations algorithms: alternating least squares (ALS), stochastic gra-
dient descent (SGD), and coordinate descent (CCD++). We explore issues on
shared- and distributed-memory systems such as memory and operation-efficient

2

algorithms, cache locality, load balance, and communication. Our contributions
include:

1. Tensor completion algorithms that scale to thousands of cores despite the
presence of highly varied mode lengths.

2. An SGD algorithm that uses a hybrid of stratification and asynchronous
updates to maintain convergence at scale.

3. A study of applying randomization to ALS and CCD++, resulting in
accelerated convergence and higher quality solutions.

4. An experimental evaluation with several real-world datasets on up to
16384 cores. Our ALS and CCD++ algorithms are 153× and 21.4×
faster than state-of-the-art parallel methods, respectively. This effectively
reduces solution time from hours to seconds.

5. Publicly available MPI+OpenMP implementations that utilize compressed
tensor representations in order to improve cache locality and reduce mem-
ory consumption and the number of FLOPs performed.

In addition, our work shows that depending on the underlying parallel archi-
tecture and the characteristics of the desired solution, the best performing op-
timization algorithm varies.

The rest of this paper is organized as follows. Section 2 introduces tensor
notation and provides a brief background on approaches for tensor completion.
Section 3 reviews optimization methods for tensor completion and existing work
on their parallelization. Section 4 details our HPC formulations of the ALS,
SGD, and CCD++ algorithms. Section 5 accelerates the convergence rates of
ALS and CCD++ by including randomization. Section 6 includes experimental
methodology and results. Finally, we provide concluding remarks in Section 7.

2. Preliminaries

2.1. Tensor Notation & Factorization

We denote matrices using bold capital letters (A) and tensors using bold
capital calligraphic letters (R). A tensor occupies three or more dimensions,
or modes. In future discussions, we focus on three-mode tensors to reduce
notational clutter. However, all of the presented algorithms are general to any
number of modes. A tensor has nnz(R) non-zero entries and is of dimension
I×J×K. The entry in position (i, j, k) is written R(i, j, k). A colon in the place
of an index represents all members of that mode. For example, A(:, f) is column
f of the matrix A. A fiber is the result of holding all but one index constant
(e.g., X (i, j, :)) and is the generalization of a row or column of a matrix. A
slice is the result of holding all but two indices constant (e.g., R(i, :, :)) and
the result is a matrix. A common operation in tensor algebra is the Hadamard
product, denoted A ∗B, which performs element-wise multiplication.

The canonical polyadic decomposition (CPD), also known as CANDECOMP
or PARAFAC [16], is a widely-used model for tensor factorization [4, 21, 26, 37,
12, 35]. The CPD is popular in domains dealing with large-scale data (e.g.,

3

= + · · ·+

Figure 1: The CPD as a sum of outer products.

machine learning) due to its efficient computation and because it is unique
under mild assumptions [34]. The CPD models R as a rank-F matrix for each
mode: A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F . Using the CPD, a tensor R
can be constructed as a summation of F rank-one tensors (Figure 1). Domain
experts are almost always interested in a low-rank CPD, with a typical value
for F being 10 or 50. The CPD can also be written element-wise:

R(i, j, k) =

F∑
f=1

A(i, f)B(j, f)C(k, f). (1)

More information on tensor factorization can be found in the survey by
Kolda and Bader [17].

2.2. Tensor Completion with the CPD
Tensor completion under the CPD model is written as the following non-

convex optimization problem:

min.
A,B,C

1

2

∑
R(:,:,:)

L(i, j, k)2 +
λ

2

(
||A||2F + ||B||2F + ||C||2F

)
, (2)

where λ is a parameter for regularization and L(·) is the loss function defined
as

L(i, j, k) = R(i, j, k)−
F∑
f=1

A(i, f)B(j, f)C(k, f). (3)

Note that Equation (2) is only defined over the non-zero (or observed) entries of
R and Equation (3) is derived from the element-wise formulation of the CPD
in Equation (1).

3. Related Work

The non-convexity of Equation (2) has inspired a substantial amount of re-
search on optimization algorithms that effectively minimize the objective while
being operation- and memory-efficient enough to be used in practice. Three op-
timization algorithms have seen particular success due to their efficiency, oppor-
tunities for parallelism, and fast convergence. These methods are summarized
in Table 1 and described below.

We follow the convention of the matrix completion community and refer to
an epoch as the work performed to update A, B, and C one time using the
training data. We avoid the term iteration in order to emphasize the varying
amounts of work performed and progress made.

4

Table 1: Summary of optimization algorithms for matrix and tensor completion.

Algorithm Complexity Storage Traversals Ref.
ALS O(M(F 2 nnz(R) + IF 3)) O(F 2) M [25, 13]
SGD O(MF nnz(R)) O(F) 1 [25, 27]
CCD++ O(MF nnz(R)) O(I) MF [27, 13]

Complexity is the number of floating-point operations performed in one epoch. Storage is the
amount of memory required to perform the factorization, excluding matrix and tensor storage.
Traversals is the number of times the sparsity structure must be traversed in one epoch, excluding
checks for convergence. Ref. provides references for the tensor variant of the algorithm. Refer-
ences for the matrix variants are found in Section 3. F is the rank of the factorization. M is the
number of modes in the tensor. I is the length of the longest mode.

3.1. Alternating Least Squares

ALS is an alternating optimization algorithm that cyclically updates one
matrix factor at a time while holding all others constant. Factor updates are
based on the observation that if B and C are treated as constant, solving for a
row of A is a convex optimization problem with a least squares solution.

Illustrated in Figure 2, computing A(i, :) accesses all non-zeros in R(i, :, :)
and also the rows B(j, :) and C(k, :) for each non-zero R(i, j, k). The rows of
B and C are used to compute Hi, a |R(i, :, :)|×F matrix. If the lth non-zero
in R(i, :, :) has coordinate (i, j, k), then Hi(l, :) = [B(j, :) ∗C(k, :)], where ∗
denotes the Hadamard product. Given Hi, we can compute A(i, :) via

A(i, :)←
(
HT
i Hi + λI

)−1

HT
i vec(R(i, :, :)), (4)

where vec(·) rearranges the non-zero entries of its argument into a dense vector.

The matrix
(
HT
i Hi + λI

)
is symmetric positive-definite and so the inversion

is accomplished via a Cholesky factorization and forward/backward substitu-
tions. ALS requires O(F 2 nnz(R)) operations to form all of the Hi, and O(F 3)
operations per row for the matrix inversions. In total, O(F 2 nnz(R) + IF 3)
operations are performed to update a factor. After computing all rows of A,
the other factors are computed in the same manner.

Parallel ALS algorithms exploit the independence of the I least squares prob-
lems and solve them in parallel. ALS was one of the first optimization algorithms
applied to large-scale matrix completion [38]. Recently, a high performance ALS
algorithm for matrix completion on CPUs and GPUs was developed [9]. The
algorithm exploits level-3 BLAS opportunities during the construction of HT

i Hi.
ALS was first extended to tensor completion on shared-memory systems [25].

Shin and Kang presented a distributed-memory implementation based on the
MapReduce paradigm [27]. They use a coarse-grained tensor decomposition
which partitions each mode separately, assigning to each process a set of com-
plete R(i, :, :), R(:, j, :), and R(:, :, k) slices. After a process updates A(i, :),
the new values are broadcasted to all other processes. Karlsson et al. developed
a distributed-memory algorithm for MPI [13]. The distributed-memory algo-
rithm assigns non-zeros to processes without restriction, allowing for nnz(R)

5

A =

B

C

Figure 2: Memory accesses during ALS. Computing A(i, :) (in orange) requires R(i, :, :) and
the corresponding rows of B and C.

parallelism. The added parallelism comes with the cost of communicating par-
tial computations of HT

i Hi and HT
i vec(R(i, :, :)) with an all-reduce, requiring

O(IF 2) words communicated per process.

3.2. Stochastic Gradient Descent

The strategy of SGD is to take many small steps per epoch, each based
on the gradient at a single non-zero. At each step, SGD selects one non-zero
at random and updates the factorization based on the gradient at R(i, j, k).
Updates are of the form

A(i, :)← A(i, :) + η [L(i, j, k) (B(j, :) ∗C(k, :))− λA(i, :)] ,

B(j, :)← B(j, :) + η [L(i, j, k) (A(i, :) ∗C(k, :))− λB(j, :)] ,

C(k, :)← C(k, :) + η [L(i, j, k) (A(i, :) ∗B(j, :))− λC(k, :)] ,

where η is a step size parameter. Each update requires O(F) operations, result-
ing in a complexity of O(F nnz(R)) per epoch.

SGD is parallelized by exploiting the independence of non-zeros whose co-
ordinates are disjoint. The popular stratification-based SGD method [10] parti-
tions an M -mode tensor into a PM grids for P processes. For example, Figure 3
shows a case with M=3 and P=3. The grid has PM−1 strata, each correspond-
ing to P blocks in a diagonal line (i.e., {(1, t2, ..., tM), (2, (t2+1) mod P, ..., (tM+
1) mod P), ..., (P, (t2+P−1) mod P, ..., (tM+P−1) mod P)} for all 1 ≤ t2, ..., tM ≤
P). Each epoch comprises processing PM−1 strata, which covers all the non-
zeros of the tensor. Since no two non-zeros in different blocks of a given stratum
share the same index in any mode, P processes can work on P blocks of a stra-
tum in parallel.

Instead of stratification, some parallel SGD methods allow non-zeros with
overlapping coordinates to be processed in parallel. Hogwild [24], a parallel
algorithm for shared-memory systems, exploits the stochastic nature of SGD
to have lock-free parallelism. The concept is simple: process the shuffled non-
zeros in parallel without stratification or synchronization constructs. Due to the

6

Figure 3: Stratified SGD. Colored blocks of non-zeros can be processed in parallel without
conflict.

sparse nature of the input, race conditions are expected to be rare. When they
do occur, the stochastic nature of the algorithm will naturally fix any errors
and continue to converge. A similar idea for distributed-memory systems is
asynchronous SGD (ASGD). All non-zeros are processed in parallel, and a few
times per epoch processes combine local updates to overlapped rows via weighted
averages. The communication and averaging of local updates are performed
asynchronously [22].

3.3. Coordinate Descent

In contrast to ALS and SGD which update entire factor rows at a time,
coordinate descent methods optimize only one variable at a time. CCD++ is a
coordinate descent method originally developed for matrix factorization [36] and
later extended to tensors [27, 13]. CCD++ updates columns of A, B, and C
in sequence, in effect optimizing the rank-one components of the factorization.
Updates take the form:

A(i, f)← αi
λ+ βi

, (5)

where
αi =

∑
R(i,:,:)

L(i, j, k)B(j, f)C(k, f),

and
βi =

∑
R(i,:,:)

(B(j, f)C(k, f))
2
.

After updating all A(:, f), the columns B(:, f) and C(:, f) are updated simi-
larly. An important optimization for CCD++ is to compute L(·) only once each
epoch and reuse it for each of the F columns [36]. This can be accomplished
without additional storage by directly updating R each iteration with the cur-
rent residual. The resulting complexity is O(F (nnz(R)+I+J+K)), which for
most datasets is O(F nnz(R)), matching SGD.

CCD++ is parallelized in the same manner as ALS. All of the αi’s and
βi’s for a mode are computed independently, again leading to a coarse-grained

7

decomposition of R [36, 27]. After updating a factor column in parallel, the
new column factors are broadcasted to all processes. Karlsson et al. use a
non-restrictive decomposition of the tensor non-zeros as in ALS [13]. Partial
products are again aggregated with an all-reduce and new columns are broad-
casted. Only the components of the current column must be communicated,
and so in one epoch there are 2F messages per factor matrix, each of size O(I).

4. Algorithms for High Performance Tensor Completion

4.1. Efficient Loss Computation with a Compressed Sparse Tensor

The choice of data structure for representing a sparse tensor affects perfor-
mance in ways such as memory bandwidth, number of FLOPs performed, and
opportunities for parallelism. The HPC formulations of the various optimiza-
tion algorithms that we developed use the compressed sparse fiber (CSF) data
structure [30], illustrated in Figure 4. CSF can be thought of as a generalization
of the compressed sparse row data data structure for matrices. The CSF data
structure represents a tensor as a forest of I trees, with each mode recursively
compressed one after the other and stored in the next level of the tree.

The evaluation of L(·) in Equation (3) benefits from exploiting the CSF
tensor representation. Consider the computation of L(·) associated with two
successive non-zeros:

L(i, j, k) = R(i, j, k)−
F∑
f=1

A(i, f)B(j, f)C(k, f),

L(i, j, k′) = R(i, j, k′)−
F∑
f=1

A(i, f)B(j, f)C(k′, f).

We reuse partial results by storing the Hadamard (element-wise) product of
A(i, :) and B(j, :) in a row vector v:

v← A(i, :) ∗B(j, :)

L(i, j, k) = R(i, j, k)−
F∑
f=1

v(f)C(k, f),

L(i, j, k′) = R(i, j, k′)−
F∑
f=1

v(f)C(k′, f).

This reduces the computation from 2F nnz(R) multiplications to F nnz(R)+FP ,
where P is the number of unique R(i, j, :) fibers. The matricized tensor times
Khatri-Rao product (MTTKRP) operation present in ALS uses the same tech-
nique for operation reduction [33].

8

i j k l
1 1 1 2
1 1 1 3
1 2 1 3
1 2 2 1
2 2 1 1
2 2 1 3
2 2 2 2

(a)

i

j

k

l

1

1

1

2 3

2

1

3

2

1

2

2

1

1 3

2

2

(b)

Figure 4: Data structures for the sparsity pattern of a four-mode tensor. (a) Coordinate
format: non-zeros are represented as an uncompressed list. (b) Compressed sparse fiber
(CSF) format: the sparsity structure is recursively compressed and non-zeros are stored as
paths from roots to leaves.

4.2. Parallel ALS

We follow the strategy of parallelizing over the rows of A for shared-memory
parallel systems. Recall from Equation (4) that Hi has |R(i, :, :)| rows and F
columns. A major challenge when designing ALS algorithms is that if mul-
tiple rows of A are computed at once, the various Hi matrices must some-
how be represented in memory. However, the collective storage for all Hi pro-
hibitively requires F nnz(R) storage. Another option, and the one used by ex-
isting work [13], is to aggregate rank-1 updates. For each non-zero R(i, j, k), a
rank-1 update with the row vector (B(j, :) ∗C(k, :)) is accumulated into HT

i Hi.
A naive implementation must aggregate the rank-1 updates for all possible i, re-
quiring IF 2 storage. It was observed that this storage overhead can be reduced
by sorting the tensor non-zeros before processing long modes [13].

We instead store M CSF representations of R, in which the mth CSF places
the mth mode at the top level of the tree and sorts the remaining ones by
length. Since the mode ordering forces all non-zeros in R(i, :, :) to be grouped
into the same tree, we can process all of the non-zeros in R(i, :, :) sequentially
and thus only the O(F 2) memory associated with a single row is allocated.
For multicore systems, we parallelize over the rows of A with a memory over-
head of only O(F 2) per thread. The total storage overhead with P threads is
(M−1) nnz(R) + PF 2 = O(M nnz(R)), which is smaller than F nnz(R) and
IF 2 for most problems. We note that this multi-CSF strategy was used in prior
work [33], but was motivated by exposing parallelism in MTTKRP instead of
reducing the size of intermediate data.

The construction of HT
i Hi and HT

i vec(R(i, :, :)) are performed together
during a single pass over the sparsity structure of R using similar strategies
as presented in Section 4.1. Interestingly, the expression HT

i vec(R(i, :, :)) is
equivalent to computing one transposed row of the MTTKRP operation, for
which operation-efficient CSF algorithms exist [30].

Accumulating rank-1 updates into HT
i Hi causes O(F 2) data to be accessed

for each non-zero and leads to memory-bound computation. We collect the

9

intermediate Hadamard products formed during MTTKRP into a thread-local
matrix of fixed size. When that matrix fills, or all non-zeros in R(i, :, :) are
processed, the thread performs one rank-k update, where k is the number of rows
in the thread-local matrix. We empirically found that a matrix of size 2048×F is
sufficient to see significant benefits from the BLAS-3 performance. For typical
values of F , this equates to storage overheads of up to a few megabytes per
thread.

We follow existing work and use a coarse-grained decomposition in the
distributed-memory setting [27]. Coarse-grained decompositions impose sep-
arate 1D decompositions on each tensor mode, eliminating the need to com-
municate and aggregate partial computations. As a result, the worst-case com-
munication volume is reduced from O(IF 2) to O(IF) per process, which is
the cost of exchanging updated rows of A. Our coarse-grained decomposition
uses chains-on-chains partitioning to optimally load-balance the slices of each
mode [23]. After partitioning and distributing non-zeros, we use our shared-
memory ALS kernels without modification. After a factor matrix is updated,
we use an all-to-all collective communication to exchange the new rows.

4.3. Parallel SGD

Processing non-zeros in a totally random fashion requires O(nnz(R)) work
per epoch to shuffle the non-zeros and results in random access patterns to the
matrix factors. We instead use a more coarse-grained approach and randomize
only one mode of the tensor, i.e., we randomize the processing order of the trees
in the CSF structure (Figure 4) but sequentially access non-zeros within each
tree. This approach reduces the cost of shuffling to O(I) and retains the cache-
friendly access pattern to the matrix factors that is provided by the sorted in-
dices in CSF. Our shared-memory SGD algorithm uses a Hogwild approach and
processes the trees in parallel without synchronization constructs [24]. Choos-
ing which mode to randomize requires careful consideration, because SGD may
not converge if updates are not sufficiently stochastic. This is demonstrated in
Section 6.3.

In a distributed-memory setting, we refer to a group of blocks in the PM

stratification grid (Figure 3) that share a coordinate as a stratum layer. For
example, blocks of coordinate (i, :, :) are in the ith stratum layer along the first
mode. We partition the grid by first selecting the longest mode and decomposing
it in a 1D fashion. Each process is assigned to a unique stratum layer in the
longest mode. This privatizes the largest matrix factor, meaning no processes
can produce updates which overlap with the another process’ local portion.
Thus, there will not be any communication associated with the largest mode
during the factorization.

The number of strata increases exponentially with the number of modes. As-
suming the number of non-zeros is constant, and therefore the work per epoch
is constant, the average work per stratum that can be processed in parallel
decreases exponentially. Many real-world tensors have modes with skewed di-
mensions. For example, a tensor of health records will have significantly more
unique patients than unique medical procedures or doctors. The lengths of the

10

(a) (b)

Figure 5: Asynchronous SGD strategies for P=4 processes. (a) S=1 stratum layers. The
longest mode is partitioned and other modes are updated asynchronously. (b) S=2 stratum
layers. The longest mode is partitioned and S teams of P/S asynchronously update at the
end of each stratum.

dense modes can be much smaller than the number of available cores. In this
case, the amount of parallelism is limited by the shortest mode (the number of
blocks in a stratum equals min(I1, ..., IM), where Im is the length of mth mode).

In order to address these parallelism challenges, we extend ASGD to tensors,
which allows multiple processes to update the same row of a factor matrix
with their local copies. ASGD can trade-off the staleness of factor matrices for
increased parallelism by adjusting the number of copies and the frequency of
synchronizing the copies. Our implementation is parameterized with the number
of stratum layers, S, which determines the number of strata as SM−1. We can
set S = P (which reduces ASGD to the usual stratified SGD) for tensors with
a few modes or set S < P for tensors with more modes. When S < P , since
each stratum has only S independent blocks, P/S processes need to update the
same range of factor matrices simultaneously, resulting in up to P/S copies of a
factor matrix row. Specifically, we partition an M -mode tensor into a P×SM−1

grid and assign P mode-1 layers to each process. Then, we group every P/S
processes as a team with total S teams. This process is shown in Figure 5.

We partition each factor matrix among P processes, aligning with the grid
used for the tensor partitioning. At the beginning of a stratum, each process
sends the rows of the factor matrices that it owns to the other processors that
need them. By our construction, a factor matrix row will be sent to one team,
thus limiting the number of copies to P/S. Then, each process goes through the
non-zeros of the current stratum it owns, updating the corresponding rows of
factor matrices. After the update, processes send the updated rows back to their
owners. Finally, processes compute weighted sums of the received updated rows,
where the weights are the number of non-zeros which updated the particular
row. For example, for a 3-mode tensor R and a given stratum, suppose process
p1 processes 2 non-zeros in a mode-2 slice R(:, i, :) and p2 processes 1 non-zeros
in the same slice. At the end of the stratum, the owner of ith row computes

11

A

B

C

Figure 6: The PM -way tiling scheme used in CCD++ for P=3 threads.

a weighted sum of the local copies of ith row of mode-2 factor matrix from p1

and p2, using 2/3 and 1/3 as their weights, respectively. Since we synchronize
the factor matrices every stratum, the number of synchronizations per epoch is
SM−1.

ASGD allows us to alleviate the limited amount of parallelism and frequent
communication, the primary challenges of SGD, especially for high-mode ten-
sors. Still, compared to ALS and CCD++, SGD has higher communication
volume, which can be analyzed as follows. For each stratum, a process receives
the rows of factor matrices that correspond to the non-zeros it needs to process,
which equals the sum of number of non-empty slices of each mode except for
the first mode (which is completely privatized). In a worst case (and not an
uncommon case for highly sparse tensors), we have only a few non-zeros per
slice, leading to receiving O(F nnz(Rp,s)) floating point numbers for each mode
for the sub-tensor Rp,s processed by process p at stratum s. Summing over all
processes and strata results in O(MF nnz(R)) total communication volume. It
is important to receive only the required factor matrix rows corresponding to
non-empty slices to be processed. Otherwise, the total communication volume

will be O
(
SM−2F

∑M
m=2 Im

)
as analyzed by Shin and Kang [27].

4.4. Parallel CCD++

As discussed in Section 3.3, CCD++ implementations follow a similar paral-
lelization strategy as ALS on shared-memory systems. Following Equation (5),
all αi’s and βi’s are independent subproblems and can be computed in parallel.
However, unlike ALS, it is not advantageous to use separate CSF representa-
tions for each mode in order to extract coarse-grained parallelism. This is due
to the added (M−1) nnz(R) operations that would be required for updating
multiple residual tensors. Therefore, we restrict ourselves to a single tensor and
turn to other decomposition strategies.

We leverage the PM -way tiling strategy developed for parallelizing MT-
TKRP with a single CSF [30]. Shown in Figure 6, an M -dimensional grid is
imposed on R, with each dimension having P chunks. This allows P threads to

12

partition any mode of R into P independent chunks, each consisting of PM−1

tiles. Each mode of R can thus be updated without parallel overheads such as
reductions or synchronization.

Conveniently, because threads access whole layers of tiles at a time, we
do not need each of the PM tiles to have a balanced number of non-zeros.
Instead, only the layers themselves need to be balanced. We use chains-on-
chains partitioning to determine the layer boundaries in each mode, resulting
in load-balanced parallel execution.

In a distributed-memory setting, the communication requirements of CCD++
closely follow those of MTTKRP. A minor variation comes from CCD++ being
a column-major method, and thus we must exchange partial results and up-
dated columns F times per mode instead of exchanging full rows of size F once
per mode. Unlike ALS, exchanging partial results does not cause a prohibitive
amount of communication. We can therefore choose from the recently proposed
fine-grained [15] and medium-grained [31] decompositions for MTTKRP. We
opt for the medium-grained decomposition, which imposes an M dimensional
grid over R. The medium-grained decomposition varies from our tiling strategy
in that there are only as many cells in the grid as processes. After distributing
R over a grid, our shared-memory parallelization strategy is applied by each
process independently.

4.5. Dense Mode Replication

ALS and CCD++ parallelize over the dimensions of R. As discussed in
Section 4.3, real-world tensors have skewed mode lengths. Simply parallelizing
over the short, dense modes is insufficient because the number of threads can
easily outnumber the slices. Additionally, the dense modes often have non-zeros
that are not uniformly distributed, leading to further load imbalance.

The issue of dense modes was first addressed by Shao [25] for shared-memory
ALS when I < P . Non-zeros are instead divided among threads and each thread
computes a local set of HT

i Hi and HT
i vec(R(i, :, :)). A parallel reduction is

then used to combine all partial results before the Cholesky factorization. We
adopt this solution in our own ALS implementation and parallelize directly over
non-zeros when the mode is dense. We use the tiling mechanism employed by
CCD++ to load balance non-zeros. The tensor is still stored using CSF, and
thus the optimizations to achieve BLAS-3 performance can still be employed.

CCD++ uses a similar mechanism for handling dense modes. CCD++ only
constructs one representation of R which is already tiled for parallelism. There
is no advantage to tiling the dense modes because they will not be partitioned,
and so we use a PM−d-way tiling on a tensor with d dense modes. Each thread
then computes local αi and βi and we aggregate them with a parallel reduction
when the mode is dense.

The same decomposition strategies apply to distributed-memory computa-
tion. The factors representing dense modes are replicated on all processes.
Instead of doing a coarse- or medium-grained decomposition to establish com-
munication patterns, a simple all-to-all reduction is used to aggregate partial
computations.

13

5. Improving Convergence of ALS and CCD++ via Randomization

Non-convex optimization problems such as (2) are susceptible to converging
to local minima. Algorithms such as SGD and randomized block coordinate
descent [20, 8] have been used with great success because they have the ability
to escape local minima when a deterministic descent algorithm would instead
converge. While randomized algorithms typically provide no guarantees on con-
verging to a globally optimal solution, in practice they often converge faster and
arrive at higher quality local minima than their deterministic counterparts.

The success of these randomized methods motivates the addition of random-
ization to ALS and CCD++. Careful attention must be paid in order to avoid
introducing additional computation or communication and to maintain the de-
gree of available parallelism. In the following discussion we refer to the factor
matrices as A(1), . . . ,A(M) for notational convenience.

5.1. Randomized ALS

An epoch of ALS traditionally updates A(1), . . . ,A(M) in a cyclic fashion. A
cyclic scheme means that A(m) will always be updated using the latest A(m−1),
which in turn was updated using the latest A(m−2), and so on. Thus, after the
factor matrices are initialized, the optimization process is entirely deterministic.
Instead, we propose to introduce mode-level randomization and apply a random
permutation π : {1, . . . ,M} → {1, . . . ,M} to the tensor modes each epoch. This

randomization scheme allows A(π(m)) to be updated using the latest state of a
different mode each epoch.

Mode-level randomization can be implemented with negligible overhead. If
each process uses the same reproducible pseudo-random number generator, then
π can be constructed locally by each process and does not need to be commu-
nicated. Thus, the only cost of randomization is the construction of π, which is
negligible.

5.2. Randomized CCD++

CCD++ presents two opportunities for low-overhead randomization: rank-
level and mode-level. Rank-level randomization updates the F rank-one tensors
in a random order instead of cyclically. Within each rank-one optimization,
CCD++ can leverage mode-level randomization by altering the order of the
updates to columns A(1)(:, f), . . . ,A(M)(:, f). Like ALS, the only overheads
associated with randomization are the construction of two permutations of size
F and M , both of which are negligible.

Additional randomized behavior could conceivably be incorporated into ALS
and CCD++ by making multiple passes over the factors and updating random
subsets of the rows each time. However, we do not explore this option because
it reduces the degree of available parallelism from the length of the mode to
the number of rows in the current block. Moreover, the already-unstructured
communication pattern becomes dynamic due to different sets of rows being
updated and communicated each pass.

14

6. Experimental Methodology and Results

6.1. Experimental Setup

We use the Cori supercomputer at NERSC. Each compute node has 128 GB
of memory and is equipped with two sockets of 16-core Intel Xeon E5-2698 v3
that has 40 MB last-level cache. The compute nodes are interconnected via Cray
Aries with Dragonfly topology. Our ALS, SGD, and CCD++ implementations
are made part of the open source tensor factorization library, SPLATT [29].
We use double-precision floating-point numbers and 64-bit integers. We use
the Intel compiler version 16.0.0 with the -xCORE-AVX2 option for instructions
available in the Haswell generation of Xeon processors, Cray MPI version 7.3.1,
and Intel MKL version 11.3.0 for LAPACK routines used in ALS. Compute jobs
are scheduled with Slurm version 16.05.03. We run one MPI rank per socket
(two ranks per node) and one OpenMP thread per core for SGD and CCD++,
and one MPI rank per node for ALS. We use the bold driver heuristic [2] for a
dynamic step size parameter in SGD with an initial value of 10−3.

We follow the recommender systems community and use root-mean-square
error (RMSE) as a measure of factorization quality. RMSE was the metric used
by the Netflix Prize [3], where the first algorithm to improve the baseline RMSE
by 10% was awarded one million dollars. RMSE is defined as

RMSE =

√∑
R(:,:,:) L(i, j, k)2

nnz(R)
.

Datasets are split into 80% training, 10% validation, and 10% test sets. The
training set is used to compute the factorization. RMSE is computed each epoch
using the validation set, and convergence is detected when the RMSE does not
improve for twenty epochs. The final factorization quality is determined by the
test set. All algorithms are given the same random initialization for fairness.

6.2. Datasets

Table 2 summarizes the tensors that we use for evaluation. The reported non-
zeros and memory requirements reflect only that of the training data, because
that is the portion of the computation that we focus on in this work. We
work with real-world datasets coming from a variety of domains. Movielens,
Netflix and Yahoo! are (user, item, month) product rating tuples. Values in
Movielens and Netflix range from 1-5 and Yahoo! values range from 1-100.
Amazon is formed from (user, item, word) tuples taken from product reviews.
Patents is formed from (year, word, word) pairwise co-occurrences taken from
United States utility patents from years 1969 through 2014. Non-zero R(i, j, k)
is equal to log(fjk), where fjk is the number of times terms j and k appeared in
a seven-word window during year i. Outpatient is a six-mode tensor of (patient,
institution, physician, diagnoses, procedure, day) tuples formed from synthetic
outpatient Medicare claims. We selected non-zeros from the original data in
order to have three-, four-, five-, and six-mode versions of this dataset with the

15

Table 2: Summary of training datasets.

Dataset NNZ Dimensions Mem. (GB)
Movielens [11] 20M 138K, 27K, 234 0.5
Netflix [3] 80M 480K, 17K, 73 2.4
Outpatient [5] 87M 1.6M, 6K, 13K, 6K, 1K, 192K 4.5
Yahoo! [7] 210M 1M, 625K, 133 6.3
Amazon [19] 1.4B 4.8M, 1.7M, 1.8M 41.5
Patents [28] 2.9B 46, 240K, 240K 85.7

K, M, and B stand for thousand, million, and billion, respectively. NNZ is the number of
non-zeros in the training dataset. Mem. is the memory required to store the tensor as a list
of (coordinate, value) tuples, measured in gigabytes.

same number of non-zeros. The Amazon, Patents, and Outpatient datasets are
publicly available in the FROSTT tensor collection [28].

Throughout the remaining discussion, we will use appropriate subsets of our
datasets based on the subject of the experiment. For example, when discussing
convergence properties of the various optimization algorithms, we will focus on
the ratings tensors (i.e., Movielens, Netflix, and Yahoo!) due to them requir-
ing many iterations to converge and their prevalence in the matrix and tensor
completion community. As another example, the synthetic Outpatient tensor
converges too quickly for a convergence study, but has a large number of modes
and allows for an evaluation on the scalability for higher order tensors.

6.3. Intra-Method Evaluation

6.3.1. ALS

Figure 7 shows the effects of BLAS-3 routines and dense mode replication
while factoring the Yahoo! tensor with F=10. With neither optimization, each
ALS epoch takes 359 seconds on average and we achieve a 22.3× speedup on 32
cores. BLAS-3 routines improve the runtime by 9×, but speedup is reduced to
20.5×. Finally, by replicating the dense mode across cores and using a parallel
reduction on partial products, we achieve 24.2× speedup with 32 cores and a
resulting 219× improvement over the original serial implementation.

6.3.2. CCD++

Figure 8 shows the effects of dense mode replication on CCD++. Dense
mode replication will not affect serial runtime, and so we show speedup as
we scale the number of threads. Speedup is improved from 4.6× to 16.2×
due to improved load balance from mode-replication and also from temporal
locality. Note that super-linear speedup is observed, reaching 2.3× with two
cores. The p×p tiling of R for p threads results in a smaller portion of the
factor matrices accessed at a time, improving temporal locality. Interestingly,
super-linear speedup was also observed in the original CCD++ evaluation for
matrices [36].

16

1 2 4 8 16 32

Number of cores

1

2

4

8

16

32

64

128

256

512

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

noopt

tile

tile+dense

Figure 7: Effects of ALS optimizations during a rank-10 factorization of the Yahoo! tensor.
noopt is a baseline ALS implementation with a CSF data structure. tile delays rank-1
updates to use the BLAS-3 dsyrk routine. tile+dense includes tile and also dense mode
replication.

Despite the improved speedup, CCD++ sees little improvement after 16
cores (one full socket) due to NUMA effects and the memory-bound nature of
the algorithm. Compared to ALS, CCD++ performs a factor of F fewer FLOPs
on every non-zero that is accessed. Additionally, CCD++ being a column-
oriented method requires MF passes per epoch over the sparsity structure of
R, compared to M times for ALS and one time for SGD. We show in Section 6.8
that this limitation can be solved by simply using one MPI process per socket.

6.3.3. SGD

Figure 9 shows the effects of coarse-grained randomization on SGD conver-
gence. We use a full random traversal of the tensor as a baseline and compare
against two CSF configurations. The first configuration, CSF-S, sorts the modes
in non-decreasing order with the smallest mode placed at the top of the data
structure. CSF-S is the default mode ordering used by SPLATT due to it typi-
cally resulting in the highest level of compression [33]. CSF-L sorts the modes in
non-increasing order, with the longest mode placed at the top of the CSF struc-
ture. CSF-L effectively trades additional storage for increased randomization
and higher degrees of parallelism. CSF-S has the fastest per-epoch runtime but
fails to converge. CSF-L exhibits similar per-epoch convergence compared to
the baseline, but the computational savings afforded by the CSF data structure
results in a faster time-to-solution. We therefore use CSF-L as the default in
the remaining experiments.

Figure 10 shows the effects of stratification on convergence. We evaluate
three algorithms across two factorizations: fully asynchronous, fully stratified,
and a hybrid algorithm with 16 stratum layers, totaling 256 strata. The hy-
brid configuration outperforms both baselines for the rank-10 factorization and
converges to a higher quality solution in less time. All three algorithms are
competitive for rank-40, but the hybrid ultimately reaches a lower RMSE.

17

1 2 4 8 16 32

Number of cores

1

2

4

8

16

32

S
p

e
e
d

u
p

ideal

noopt

dense

Figure 8: Effects of CCD++ optimizations during a rank-10 factorization of the Yahoo! tensor.
noopt is a baseline CCD++ implementation with the CSF data structure. dense uses dense
mode replication.

0 500 1000 1500 2000 2500
Time (seconds)

30

40

50

60

70

80

90

V
a
li
d

a
ti

o
n

 R
M

S
E

COORD

CSF-S

CSF-L

Figure 9: Effects of randomization strategy on SGD convergence rate during a serial rank-40
factorization of the Yahoo! tensor. COORD uses complete randomization on a coordinate
form tensor. CSF-S randomizes over the shortest mode. CSF-L randomizes over the longest
mode.

18

0 10 20 30 40 50 60
Time (seconds)

22

24

26

28

30

32

V
a
li
d

a
ti

o
n

 R
M

S
E

F10-S1

F10-S16

F10-S64

F40-S1

F40-S16

F40-S64

Figure 10: Convergence rates for SGD parallelization strategies using 32 compute nodes on
the Yahoo! dataset. F denotes the rank of the factorization. S denotes the number of stratum
layers, scaling from fully asynchronous (S1) to fully stratified (S64).

6.4. Communication Volume

Figure 11 shows the average communication volume per epoch. CCD++
consistently has a lower communication volume than SGD and ALS due to its
medium-grained decomposition. The communication volume for SGD increases
until four nodes (eight ranks) are used, and then sharply decreases. The commu-
nication volume of SGD scales with the number of strata used, which we limit
to 64. Recall that SGD uses SM−1 strata for an M -mode tensor. Therefore, we
see volume increase until we reach the maximum number of strata. From that
point communication is limited to within strata, and we see communication vol-
ume decrease. The communication volume of ALS increases until eight nodes
and then stays near constant. ALS uses a coarse-grained decomposition which
in the worst case requires each communication of entire factors per epoch.

6.5. Strong Scaling

Figure 12 shows strong scaling results. For SGD, we again limit the number
of strata to 64 which provides a good trade-off between convergence rate and
parallelism. As discussed in the evaluation of communication volume, SGD
primarily introduces overhead until the maximum number of strata is reached,
and after that point we begin to overcome the communication overheads. SGD
only scales to eight nodes on the Amazon tensor. This is because Amazon is
significantly more sparse than Netflix and Yahoo! and as a result SGD performs
less work per stratum, resulting in high communication costs.

ALS is unable to process the Amazon and Patents tensors on as few nodes
as SGD and CCD++ due to it requiring three copies of R during factorization.
Neither ALS nor CCD++ are consistently faster per epoch at 32 nodes. CCD++
begins slower on all datasets but out-scales ALS on all but Yahoo!, which does
not have enough non-zeros to effectively parallelize over 64 nodes (2048 cores).

19

1 2 4 8 16 32
Nodes

0

1

2

3

4

5

6

A
v
e
ra

g
e
 C

o
m

m
u

n
ic

a
ti

o
n

 V
o
lu

m
e
 (

b
y
te

s
)

1e8

ALS

SGD

CCD++

Figure 11: Average communication volume per node on the Yahoo! dataset. CCD++ and
SGD use two MPI ranks per node and ALS uses one.

1 2 4 8 16 32

Nodes

0.03

0.06

0.12

0.25

0.50

1.00

2.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

ALS

CCD++

SGD

(a) Netflix

1 2 4 8 16 32 64

Nodes

0.06

0.12

0.25

0.50

1.00

2.00

4.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

ALS

CCD++

SGD

(b) Yahoo!

1 2 4 8 16 32 64

Nodes

4.00

8.00

16.00

32.00

64.00

128.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

ALS

CCD++

SGD

(c) Amazon

2 4 8 16 32 64 128 256 512

Nodes

0.06

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

ALS

CCD++

SGD

(d) Patents

Figure 12: Strong scaling the optimized ALS, SGD, and CCD++ algorithms. Each node has
32 cores.

20

The disparity between CCD++ and other algorithms on Amazon is due to its
large size being more taxing on memory bandwidth. CCD++ is able to scale
through 512 nodes (16384 cores) on Patents due to its high density, resulting
in a small amount of communication and memory bandwidth relative to the
computational load. ALS is unable to scale past 32 nodes on Patents due
to its short mode lengths, which result in a load-imbalanced coarse-grained
decomposition. The second and third modes are too long to treat as dense
(i.e., the storage costs of normal equations are prohibitive). In contrast, the
medium-grained decomposition used by CCD++ is able to find a load balanced
distribution on Patents.

6.6. Rank Scaling

Figure 13 shows the effects varying the rank of the factorization. We scale
from rank 10 to 80 on the Yahoo! dataset. CCD++ and SGD both have
O(F nnz(R)) complexity, so we expect the runtime to increase by 8× as we
scale F . ALS, on the other hand, has complexity O(F 2 nnz(R) + IF 3). The
F 2 nnz(R) term will dominate in most scenarios because users are interested in
low rank factorizations and because I � nnz(R) for most tensors. Under this
assumption, we expect the runtime of ALS to increase by a factor of 802/102 =
64.

CCD++ sees the expected linear increase in runtime on both 32 and 1024
cores: 7.9× and 7.6×, respectively. SGD scales sub-linearly and only sees 2.4×
and 4.2× increases on 32 and 1024 cores, respectively. The sub-linear effects are
due to the way SGD accesses the matrix factors. SGD only ever accesses entire
rows of the factors, leading to spatial locality and vectorized inner loops. We do
not see the same effects for CCD++ because it accesses the factors in a strided
manner that is dependent on the sparsity pattern. Additionally, CCD++ must
traverse the sparsity pattern of the tensor F times for each mode, compared to
once for SGD. Surprisingly, ALS only sees 9.8× and 10.1× increase in runtime
at 32 and 1024 cores, respectively. While the work does increase quadratically,
all of the quadratic functions are performed by BLAS-3 routines on small, dense
matrices. The work that depends on the sparsity pattern of R is an MTTKRP
operation, which has the same spatial locality as SGD and a cheaper complexity
of O(F nnz(R)). The BLAS-3 routines will eventually out-scale the cost of the
MTTKRP operation, but factorizations of such a high rank are unlikely to be
useful to a domain expert.

6.7. Mode Scaling

Figure 14 shows the scalability of our algorithms on the Outpatient dataset
as we increase the number of tensor modes while keeping the number of non-
zeros constant. ALS sees a roughly linear increase in runtime, matching the
computational complexity in Table 1. The runtime of the sixth mode increases
super-linearly, which we attribute to the sixth mode being longer than most oth-
ers and ALS having a O(IF 3) complexity component. CCD++ exhibits severe
slowdown as the number of modes is increased. This is due to CCD++ doing

21

10 20 30 40 50 60 70 80
Rank

0

5

10

15

20

25

T
im

e
 p

e
r

E
p

o
c
h

 (
s
)

ALS

SGD

CCD++

(a) 32 cores (1 node)

10 20 30 40 50 60 70 80
Rank

0.0

0.5

1.0

1.5

2.0

T
im

e
 p

e
r

E
p

o
c
h

 (
s
)

ALS

SGD

CCD++

(b) 1024 cores (32 nodes)

Figure 13: Effects of increasing factorization rank on the Yahoo! dataset.

3 4 5 6
Number of modes

0

1

2

3

4

5

Ti
m

e
pe

r
ep

oc
h

(s
)

ALS
CCD++
SGD

Figure 14: Average time per epoch with 16 nodes while scaling the number of modes using
the Outpatient dataset.

MF passes over R per epoch and performing only O(nnz(R)) work per pass.
The memory-bound nature of CCD++ is exaggerated as the number of modes
increases. SGD has a nearly constant runtime due to it only performing one
pass over R per epoch, regardless of the number of modes. Additionally, higher-
order tensors such as Outpatient have several dense modes which will exhibit
high temporal locality, leaving the system’s memory bandwidth free for stream-
ing through the single representation of R. SGD appears to be an attractive
choice for higher-order tensors. We cautiously recommend it, however, because
situations may arise in which many stratum layers are required to maintain
convergence, negatively impacting performance.

6.8. Comparison Against the State-of-the-Art

In Figure 15 we compare our ALS and CCD++ algorithms against the state-
of-the-art MPI implementations [13]. We scale from 1 to 1024 cores on the

22

Yahoo! tensor with F=10. We use one MPI rank per node for opt-ALS due
to the high speedup it achieves on 32 cores and also due to the high commu-
nication volume that comes with a coarse-grained decomposition. Throughout
the comparison we refer to the existing implementations as “base-ALS” and
“base-CCD++” and our own as “opt-ALS” and “opt-CCD++”.

On one core, opt-ALS is 7× faster than base-ALS due to the BLAS-3 perfor-
mance. opt-ALS then scales to achieve 353× speedup at 1024 cores, compared
to the 13.5× speedup of base-ALS. The improvements in speedup are due to the
coarse-grained decomposition used by opt-ALS which reduces the communica-
tion volume from O(IF 2) to O(IF) words. The difference in communication
requirements is observed in the ratio of communication to computation: base-
ALS spends 95% of the total runtime communicating, compared to opt-ALS
which spends 39% of its runtime communicating. opt-ALS is 185× faster than
base-ALS when both use 1024 cores.

Serial opt-CCD++ is 2.2× faster than base-CCD++ due to the operation
reduction and improved cache locality resulting from the CSF data structure.
The locality improvements are also present in the ALS results, but due to ALS
being a compute-bound algorithm they are not observed except for very small
values of F . On 1024 cores, opt-CCD++ and base-CCD++ achieve 685× and
74.2× speedup, respectively. The disparity in speedups is attributed to the large
amount of communication performed by base-CCD++, in which 69% of the to-
tal runtime is spent in communication routines. In comparison, opt-CCD++
spends 25% of the total runtime communicating. The medium-grained decom-
position used by opt-CCD++ results in a smaller communication volume than
the arbitrary decomposition used by base-CCD++. Communication volume is
further reduced by utilizing sparse communication and only sends an updated
value to the processes that require it.

We also note that with the configuration using one MPI rank per socket,
opt-CCD++ achieves a 30× speedup on 32 cores compared to 16.2× with a
pure OpenMP configuration.

6.9. Convergence

We now evaluate the time-to-solution of ALS, CCD++, and SGD. Figure 16
shows convergence of our optimized algorithms using 1, 32, and 1024 cores. SGD
is the most successful algorithm in a serial setting. For F=10, SGD converges
within 1500 seconds and achieves a quality that takes ALS over twice as long to
reach. SGD sees a similar advantage when F=40, but ALS ultimately reaches
a higher quality solution shortly after SGD converges.

On a single node, ALS outperforms SGD and CCD++ for both F=10 and
F=40. Since ALS has the fastest per-epoch times in addition to making the
most progress per epoch, it is the recommended algorithm for small-to-moderate
node counts. CCD++ is also competitive in the multi-core environment and
has the added benefit of having a smaller memory footprint due to only storing
a single copy of R. Trends continue as we move to a large-scale distributed
system and ALS narrowly bests CCD++ for F=40. While ALS still converges

23

1 2 4 8 16 32 64 128 256 512 1024

Number of cores

0.06

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

base-ALS

opt-ALS

(a) ALS

1 2 4 8 16 32 64 128 256 512 1024

Number of cores

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

base-CCD++

opt-CCD++

(b) CCD++

Figure 15: Comparison of the presented ALS and CCD++ algorithms (prefixed opt) against
the state-of-the-art MPI implementations (prefixed base) on a rank-10 factorization of the
Yahoo! tensor.

faster than SGD and CCD++, CCD++ is more scalable in distribute-memory
environments due to its lower communication volume.

6.10. Effects of Randomization on ALS and CCD++

We now explore the convergence benefits offered by randomization during
ALS and CCD++. Figure 17 shows the convergence per epoch when applying
mode-level randomization to ALS and combinations of mode- and rank-level
randomization to CCD++. In each case, we show both the value of the objec-
tive function and the validation RMSE. Observing the objective function offers
insights into the effects on the actual optimization algorithm, whereas observ-
ing the validation RMSE measures the predictive abilities of the resulting model
(i.e., its usefulness to a domain specialist).

Both algorithms benefit from randomization on the Movielens dataset. Ran-
domized ALS requires 66% fewer epochs to arrive at a validation RMSE which
is 0.3% lower than cyclic. Likewise, all variations of randomization improve
the validation RMSE of CCD++. The best performance is achieved by rank-
level randomization, which converges 16% faster than cyclic and improves the
solution again by 0.3%. The objective function is improved in all cases, and
therefore the gains are attributed to an optimization algorithm which converges
more quickly to a better local minimum.

Netflix likewise benefits from randomization in terms of both convergence
rate and validation RMSE. Interestingly, mode-level randomization achieves the
best validation RMSE for both ALS and CCD++, but at the same time arrives
at the worst objective value. Randomization allows the optimization algorithm
to learn a more general, albeit less optimized solution.

We find that algorithms which use mode-level randomization tend to learn
models with empty columns, reducing the rank of the factorization. We ex-
plore this phenomenon in Figure 18. We plot the number of non-zero rank-one
components, which refer to as the effective rank of the factorization. ALS and

24

0 2000 4000 6000 8000 10000
Time (seconds)

22

24

26

28

30

32

V
a
li
d

a
ti

o
n

 R
M

S
E

F10 ALS

F40 ALS

F10 CCD++

F40 CCD++

F10 SGD

F40 SGD

(a) Serial

0 200 400 600 800 1000
Time (seconds)

22

24

26

28

30

32

V
a
li
d

a
ti

o
n

 R
M

S
E

F10 ALS

F40 ALS

F10 CCD++

F40 CCD++

F10 SGD

F40 SGD

(b) 32 cores (1 node)

0 10 20 30 40 50 60
Time (seconds)

22

24

26

28

30

32

V
a
li
d

a
ti

o
n

 R
M

S
E

F10 ALS

F40 ALS

F10 CCD++

F40 CCD++

F10 SGD

F40 SGD

(c) 1024 cores (32 nodes)

Figure 16: Convergence rates for parallel methods on the Yahoo! dataset with factorization
ranks 10 (F10) and 40 (F40). Ticks are placed every five epochs.

25

CCD++ learn models with ranks 32 and 25, respectively. The lower-rank mod-
els do not fit the training data as well, and thus have a higher objective value.
However, due to their lower complexity and sufficiently good model of the data,
they are able to better predict unknown entries in the validation set.

Lastly, Yahoo! does not benefit from randomization and the algorithms
which use mode-level randomization achieve notably worse objective values and
validation RMSEs. The lower-rank factorizations learned via randomization are
not able to capture the training data sufficiently well to result in a predictive
model.

7. Conclusions

We explored the design and implementation of three optimization algorithms
for tensor completion: ALS, SGD, and CCD++. We focused on modern archi-
tectures with shared- and distributed-memory parallelism. We solved issues such
as memory- and operation-efficiency, cache locality, load balance, and commu-
nication. Following our improvements, we achieve speedups up through 16384
cores and are up to 185× faster than state-of-the-art parallel methods. We
further improved the convergence rates of ALS and CCD++ by introducing
randomization during the optimization procedure.

When comparing algorithms for tensor completion, time-to-solution is the
most important detail for end users. We compared convergence rates in three
configurations: serial, a multi-core system, and a large-scale distributed system
and showed that no algorithm performs best in all three environments. SGD
is most competitive in a serial environment, ALS is recommended for shared-
memory systems, and both ALS and CCD++ are competitive on distributed
systems. Using our developments, the time-to-solution on large datasets is re-
duced from hours to seconds.

26

0 100 200 300
Epoch

1.6

1.7

1.8

1.9

2.0

2.1

O
b

je
c
ti

v
e

1e7

0 100 200 300
Epoch

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

V
a
li
d

a
ti

o
n

 R
M

S
E

cyclic mode

(a) Movielens - ALS

0 100 200
Epoch

1.6

1.7

1.8

1.9

2.0

O
b

je
c
ti

v
e

1e7

0 100 200
Epoch

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

V
a
li
d

a
ti

o
n

 R
M

S
E

cyclic mode rank+mode rank

(b) Movielens - CCD++

0 100 200 300
Epoch

5.5

6.0

6.5

O
b

je
c
ti

v
e

1e7

0 100 200 300
Epoch

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

V
a
li
d

a
ti

o
n

 R
M

S
E

cyclic mode

(c) Netflix - ALS

0 200 400 600
Epoch

5.5

6.0

6.5

7.0

O
b

je
c
ti

v
e

1e7

0 200 400 600
Epoch

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

V
a
li
d

a
ti

o
n

 R
M

S
E

cyclic mode rank+mode rank

(d) Netflix - CCD++

0 100 200 300 400 500
Epoch

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

O
b

je
c
ti

v
e

1e11

0 100 200 300 400 500
Epoch

21.5

22.0

22.5

23.0

V
a
li
d

a
ti

o
n

 R
M

S
E

cyclic mode

(e) Yahoo! - ALS

0 200 400 600 800 1000
Epoch

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

O
b

je
c
ti

v
e

1e11

0 200 400 600 800 1000
Epoch

21.5

22.0

22.5

23.0

V
a
li
d

a
ti

o
n

 R
M

S
E

cyclic mode rank+mode rank

(f) Yahoo! - CCD++

Figure 17: Effects of randomization on ALS and CCD++ convergence during rank-40 factor-
izations of three datasets. cyclic uses no randomization, mode uses mode-level, rank uses
rank-level, and rank+mode uses both rank- and mode-level randomization.

27

0 100 200 300
Epoch

0

5

10

15

20

25

30

35

40
E
ff

e
c
ti

v
e
 R

a
n

k

0 100 200 300
Epoch

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

V
a
li
d

a
ti

o
n

 R
M

S
E

cyclic mode

(a) Netflix - ALS

0 200 400 600
Epoch

0

5

10

15

20

25

30

35

40

E
ff

e
c
ti

v
e
 R

a
n

k

0 200 400 600
Epoch

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

V
a
li
d

a
ti

o
n

 R
M

S
E

cyclic mode rank+mode rank

(b) Netflix - CCD++

Figure 18: The number of non-zero rank-one components (effective rank) during a rank-40
factorization of the Netflix dataset.

Acknowledgments

This work is an extended and revised version of a preliminary conference
paper [32]. The authors would like to thank Mikhail Smelyanskiy for valu-
able discussions, Jeff Hammond for generously donating computing time at
NERSC, and Karlsson et al. for sharing source code used for evaluation. This
work was supported in part by NSF (IIS-0905220, OCI-1048018, CNS-1162405,
IIS-1247632, IIP-1414153, IIS-1447788), Army Research Office (W911NF-14-1-
0316), a University of Minnesota Doctoral Dissertation Fellowship, Intel Soft-
ware and Services Group, and the Digital Technology Center at the University
of Minnesota. Access to research and computing facilities was provided by the
Digital Technology Center and the Minnesota Supercomputing Institute. This
research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

[1] Muthu Baskaran, Benôıt Meister, Nicolas Vasilache, and Richard Lethin.
Efficient and scalable computations with sparse tensors. In High Perfor-
mance Extreme Computing (HPEC), 2012 IEEE Conference on, pages 1–6.
IEEE, 2012.

[2] Roberto Battiti. Accelerated backpropagation learning: Two optimization
methods. Complex systems, 3(4):331–342, 1989.

[3] James Bennett and Stan Lanning. The netflix prize. In Proceedings of
KDD cup and workshop, volume 2007, page 35, 2007.

28

[4] J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences
in multidimensional scaling via an n-way generalization of “Eckart-Young”
decomposition. Psychometrika, 35(3):283–319, 1970.

[5] Center for Medicare and Medicaid Services. CMS data entrepreneurs syn-
thetic public use file (DE-SynPUF), 2010.

[6] Joon Hee Choi and S. Vishwanathan. DFacTo: Distributed factorization
of tensors. In Advances in Neural Information Processing Systems, pages
1296–1304, 2014.

[7] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The
yahoo! music dataset and kdd-cup’11. In KDD Cup, pages 8–18, 2012.

[8] Olivier Fercoq and Peter Richtárik. Accelerated, parallel, and proximal
coordinate descent. SIAM Journal on Optimization, 25(4):1997–2023, 2015.

[9] Mark Gates, Hartwig Anzt, Jakub Kurzak, and Jack Dongarra. Accelerat-
ing collaborative filtering using concepts from high performance computing.
In Big Data (Big Data), 2015 IEEE International Conference on, pages
667–676. IEEE, 2015.

[10] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-
scale matrix factorization with distributed stochastic gradient descent. In
Proceedings of the 17th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 69–77. ACM, 2011.

[11] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: His-
tory and context. ACM Transactions on Interactive Intelligent Systems
(TiiS), 5(4):19, 2016.

[12] Joyce C. Ho, Joydeep Ghosh, and Jimeng Sun. Marble: high-throughput
phenotyping from electronic health records via sparse nonnegative tensor
factorization. In Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 115–124. ACM,
2014.

[13] Lars Karlsson, Daniel Kressner, and André Uschmajew. Parallel algorithms
for tensor completion in the cp format. Parallel Computing, 57:222–234,
2016.

[14] Oguz Kaya and Bora Uçar. High-performance parallel algorithms for the
Tucker decomposition of higher order sparse tensors. PhD thesis, Inria-
Research Centre Grenoble–Rhône-Alpes, 2015.

[15] Oguz Kaya and Bora Uçar. Scalable sparse tensor decompositions in dis-
tributed memory systems. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
page 77. ACM, 2015.

29

[16] Henk A. L. Kiers. Towards a standardized notation and terminology in
multiway analysis. Journal of chemometrics, 14(3):105–122, 2000.

[17] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and appli-
cations. SIAM review, 51(3):455–500, 2009.

[18] Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, and Richard
Vuduc. An input-adaptive and in-place approach to dense tensor-times-
matrix multiply. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, page 76.
ACM, 2015.

[19] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics:
understanding rating dimensions with review text. In Proceedings of the
7th ACM conference on Recommender systems, pages 165–172. ACM, 2013.

[20] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale opti-
mization problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[21] Dimitri Nion and Nicholas D. Sidiropoulos. Tensor algebra and multidi-
mensional harmonic retrieval in signal processing for mimo radar. Signal
Processing, IEEE Transactions on, 58(11):5693–5705, 2010.

[22] Fabio Petroni and Leonardo Querzoni. GASGD: stochastic gradient descent
for distributed asynchronous matrix completion via graph partitioning. In
Proceedings of the 8th ACM Conference on Recommender systems, pages
241–248. ACM, 2014.

[23] Ali Pınar and Cevdet Aykanat. Fast optimal load balancing algorithms for
1d partitioning. Journal of Parallel and Distributed Computing, 64(8):974–
996, 2004.

[24] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hog-
wild: A lock-free approach to parallelizing stochastic gradient descent. In
Advances in Neural Information Processing Systems, pages 693–701, 2011.

[25] Weijia Shao. Tensor completion. Master’s thesis, Universität des Saarlandes
Saarbrücken, 2012.

[26] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan
Hanjalic, and Nuria Oliver. Tfmap: optimizing map for top-n context-aware
recommendation. In Proceedings of the 35th international ACM SIGIR
conference on Research and development in information retrieval, pages
155–164. ACM, 2012.

[27] Kijung Shin and U. Kang. Distributed methods for high-dimensional and
large-scale tensor factorization. In Data Mining (ICDM), 2014 IEEE In-
ternational Conference on, pages 989–994, Dec 2014.

30

[28] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing
Liu, and George Karypis. FROSTT: The formidable repository of open
sparse tensors and tools, 2017.

[29] Shaden Smith and George Karypis. SPLATT: The Surprisingly ParalleL
spArse Tensor Toolkit. http://cs.umn.edu/~splatt/.

[30] Shaden Smith and George Karypis. Tensor-matrix products with a com-
pressed sparse tensor. In Proceedings of the 5th Workshop on Irregular
Applications: Architectures and Algorithms, page 7. ACM, 2015.

[31] Shaden Smith and George Karypis. A medium-grained algorithm for dis-
tributed sparse tensor factorization. In 30th IEEE International Parallel
& Distributed Processing Symposium (IPDPS’16), 2016.

[32] Shaden Smith, Jongsoo Park, and George Karypis. An exploration of opti-
mization algorithms for high performance tensor completion. In Proceedings
of the 2016 ACM/IEEE conference on Supercomputing, 2016.

[33] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George
Karypis. SPLATT: Efficient and parallel sparse tensor-matrix multipli-
cation. In International Parallel & Distributed Processing Symposium
(IPDPS’15), 2015.

[34] Jos M.F. ten Berge and Nicholas D. Sidiropoulos. On uniqueness in can-
decomp/parafac. Psychometrika, 67(3):399–409, 2002.

[35] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C. Denny, Abel Kho,
You Chen, Bradley A. Malin, and Jimeng Sun. Rubik: Knowledge guided
tensor factorization and completion for health data analytics. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1265–1274. ACM, 2015.

[36] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon. Scalable coordi-
nate descent approaches to parallel matrix factorization for recommender
systems. In 2012 IEEE 12th International Conference on Data Mining,
pages 765–774. IEEE, 2012.

[37] Qiang Zhang, Michael W. Berry, Brian T. Lamb, and Tabitha Samuel.
A parallel nonnegative tensor factorization algorithm for mining global cli-
mate data. In Computational Science–ICCS 2009, pages 405–415. Springer,
2009.

[38] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-
scale parallel collaborative filtering for the netflix prize. In Algorithmic
Aspects in Information and Management, pages 337–348. Springer, 2008.

31

