
Streaming Tensor Factorization 
for Infinite Data Sources

Shaden Smith - Intel Parallel Computing Lab
Kejun Huang - University of Minnesota

Nicholas D. Sidiropoulos - University of Virginia
George Karypis - University of Minnesota

Shaden.Smith@intel.com



Tensor factorization

• Multi-way data can be naturally represented as a tensor.
• Tensor factorizations are powerful tools for facilitating the analysis of 

multi-way data.
• Think: singular value decomposition, principal component analysis.

So
ur

ce
 IP

Destination IP

Port

So
ur

ce
 IP Destination IP

Canonical Polyadic Decomposition

Po
rt



Streaming data

• We often need to analyze multi-way data that is streamed.
• Applications include: cybersecurity, discussion tracking, traffic analysis, video 

monitoring, …
• A batch of data arrives each timestep 1, …, T.

• T may be infinite!
• Batches are assumed to come from the same generative model.

• In practice, we must account for the model slowly changing over time.

So
ur

ce
 IP

Destination IP Port

Time 1 Time 2

...

Time T

So
ur

ce
 IP

Destination IP Port So
ur

ce
 IP

Destination IP Port



Streaming tensor factorization

• The collection of N-dimensional tensors can be viewed as an (N+1)-
dimensional tensor observed over time.
• We want to cheaply update an existing factorization each timestep to 

incorporate the latest batch of data.
• Challenge: storing historical tensor or factorization data that grows with 

time is infeasible.
• Challenge: we would like to apply constraints such as non-negativity to the 

factorization.

T

T



CP-stream: optimization problem
• We start from the following non-convex optimization problem over all 

timesteps:

• We constrain the factor matrices to have column norms ≤ 1.
• This improves stability due to a scaling ambiguity in the CPD.

• The #$ ∈ ℝ' vectors form the rows of (, the temporal factor matrix.



CP-stream: formulation
• To avoid storing historic tensor data, we follow (Vandecappelle et al. 

2017) and instead use the historical factorization:

• ! is a forgetting factor used to down-weight the importance of older 
data.
• Limitation: this still requires " ∈ ℝ% × '.



CP-stream: algorithm (details in paper/poster)
When a new batch of data arrives at time !:
1. Compute "# . This has a closed-form solution involving the new 

batch of tensor data and the previous factor matrices.

• Complexity does not depend on T.

2. Update the factor matrices. We use alternating optimization with 

ADMM (AO-ADMM; Huang & Sidiropoulos 2016).

• The temporal factor $ is only used in its compact Gramian form $%$, which is 

computed recursively:



Extensions
• CP-stream supports additional constraints/regularizations. For 

stability, they are combined with the column norm constraint (proof 
of convergence in paper).
• Non-negativity
• ℓ" regularization to promote sparse factors

• Tensor sparsity:
• CP-stream scales linearly in the number of non-zeros and makes use of the 

existing optimized kernels.
• Sparsity is not treated as missing, because absence of activity also carries 

meaning in our applications.



Evaluation

• We generated a dense 
100x100x1000 tensor from rank-
10 factors (plus noise).
• We compare against:
• Online-CP (Zhou et al., 2016)
• Online-SGD (Mardani et al., 2015)

• Shown is the estimation error of 
the known ground-truth factors:

0 200 400 600 800 1000
t

10-5

100

105

1010

Sc
al

ed
 e

st
im

at
io

n 
er

ro
r Online-CP

Online-SGD
CP-stream



Case study: discussion tracking

• Comments on reddit.com form a 
(user, community, word) tensor.
• A new batch arrives each day.
• 65M non-zeros over one year.

• Each user, community, and word 
are represented by a low-rank 
vector in the factorization.
• Tracking the vectors representing 

the word “Obama” and the stocks 
community reveals events in 2008.



Wrapping up

• Streaming tensor factorization has applications in areas such as 
cybersecurity, discussion tracking, and traffic analysis.
• CP-stream uses a formulation suitable for long-term streaming, and 

supports sparsity and constraints.
• Our source code is to be open sourced as part of SPLATT
• https://github.com/ShadenSmith/splatt

• Sparse tensor datasets available in FROSTT:
• http://frostt.io/

• Contact: Shaden.Smith@intel.com or shaden@cs.umn.edu

https://github.com/ShadenSmith/splatt
http://frostt.io/
mailto:Shaden.Smith@intel.com


Backup



AO-ADMM



AO-ADMM (2)


