Streaming Tensor Factorization
for Infinite Data Sources

Shaden Smith - Intel Parallel Computing Lab
Kejun Huang - University of Minnesota
Nicholas D. Sidiropoulos - University of Virginia

George Karypis - University of Minnesota

Shaden.Smith@intel.com



Tensor factorization

* Multi-way data can be naturally represented as a tensor.

* Tensor factorizations are powerful tools for facilitating the analysis of
multi-way data.

* Think: singular value decomposition, principal component analysis.

4 o N
— E—

I Destination IP
Destination IP

\ Canonical Polyadic Decomposition /

Source IP 4,
Source IP




Streaming data

* We often need to analyze multi-way data that is streamed.

* Applications include: cybersecurity, discussion tracking, traffic analysis, video
monitoring, ...

* A batch of data arrives each timestep 1, ..., T.
* T may be infinite!

* Batches are assumed to come from the same generative model.
* In practice, we must account for the model slowly changing over time.

Source IP
Source IP
Source IP

& ay
© ©
Destination IP Destination IP Destination IP

N
QO

Time 1 Time 2 Time T



Streaming tensor factorization

* The collection of N-dimensional tensors can be viewed as an (N+1)-
dimensional tensor observed over time.

* We want to cheaply update an existing factorization each timestep to
incorporate the latest batch of data.

* Challenge: storing historical tensor or factorization data that grows with
time is infeasible.

* Challenge: we would like to apply constraints such as non-negativity to the

factorization.
\ J I
Y \
;




CP-stream: optimization problem

* We start from the following non-convex optimization problem over all
timesteps:

1 2
. . . - . (n) ] 2
{A(n)erurQ]/LgLTI{Zstee[RK} 2 ?1 (HXt [[{A }, St]] + )\HStH )
subject to A0 ¢ C.

* We constrain the factor matrices to have column norms < 1.
* This improves stability due to a scaling ambiguity in the CPD.

* The s; € RX vectors form the rows of S, the temporal factor matrix.



CP-stream: formulation

* To avoid storing historic tensor data, we follow (Vandecappelle et al.
2017) and instead use the historical factorization:

0) /-Lt_i
2

| =

1 A 2
minimize o[ & - 1A% s [{A? }; s] — [{A%); ]
An »St

subject to AV e C.

* uis a forgetting factor used to down-weight the importance of older
data.

e Limitation: this still requires § € RT * K.



CP-stream: algorithm (details in paper/poster)

When a new batch of data arrives at time t:

1. Compute s;. This has a closed-form solution involving the new
batch of tensor data and the previous factor matrices.

* Complexity does not depend on T.

2. Update the factor matrices. We use alternating optimization with
ADMM (AO-ADMM; Huang & Sidiropoulos 2016).

* The temporal factor S is only used in its compact Gramian form S'S, which is
computed recursively:

G, = uGi_1 + sts_tr.



Extensions

» CP-stream supports additional constraints/regularizations. For
stability, they are combined with the column norm constraint (proof
of convergence in paper).

* Non-negativity
* £, regularization to promote sparse factors

* Tensor sparsity:

e CP-stream scales linearly in the number of non-zeros and makes use of the
existing optimized kernels.

e Sparsity is not treated as missing, because absence of activity also carries
meaning in our applications.



Evaluation

* We generated a dense
100x100x1000 tensor from rank-
10 factors (plus noise).

* We compare against:
* Online-CP (Zhou et al., 2016)
* Online-SGD (Mardani et al., 2015)

* Shown is the estimation error of
the known ground-truth factors:

1 1 2 2
Ay —AP2 AP - AP
1 2
| A2 A2

Scaled estimation error

1010

10°

10

109 |

Online-CP ]
Online-SGD |
CP-stream

———

0 200 400 600 800 1000

t



Case study: discussion tracking

e Comments on reddit.com form a
(user, community, word) tensor.
* A new batch arrives each day.
* 65M non-zeros over one year.

e Each user, community, and word
are represented by a low-rank
vector in the factorization.

* Tracking the vectors representing
the word “Obama” and the stocks

community reveals events in 2008.

Signal

0.20 -

0.15 A

0.05 -

0.00 -

—— Obama
-== stocks

nomination

v

market

crash election

v

—— T ol "

\4

ot L

il

\’00 <<é/0 @'b( v.Q« @’O\x \Q(\ \0\\\ vx)q %Q/Q O(}’ $OA

Date in 2008

&




Wrapping up

* Streaming tensor factorization has applications in areas such as
cybersecurity, discussion tracking, and traffic analysis.

e CP-stream uses a formulation suitable for long-term streaming, and
supports sparsity and constraints.

* Qur source code is to be open sourced as part of SPLATT
e https://github.com/ShadenSmith/splatt

» Sparse tensor datasets available in FROSTT:
 http://frostt.io/

e Contact: shaden.Smith@intel.com OF shaden@cs.umn.edu



https://github.com/ShadenSmith/splatt
http://frostt.io/
mailto:Shaden.Smith@intel.com

Backup



AO-ADMM

4.3)

n=1

N T /N !
St < ( @1 AgﬁlAg?l + )\I) ( ® AS?1> VCC(Xt).

45) &= ( f? A<”>TA<">> ® (uUGi-1 + 818;) ,

N

-
4.6) wh= ( ® A(”)> vec(X¢)
v#EN

+ AW (( @ A,E”EA@)) ® uGt1> ,

and

t—1

t—i T

Gt_lzg pwss;.
i=1

Algorithm 1 CP-stream

Require: X, X5, ..., X1; forgetting factor p
I: initialize A, ..., AV
2: Gop+ 0
3: fort=1,....T do

4 sy < least-squares update (4.3)

5 repeat

6: forn=1,..., Ndo

7 construct @@ and &® per (4.5) and (4.6)
8 p = tr(di(”))/K

9: A" « ADMM iterates (4.7)
10: end for
11: until convergence
12: G =uGi_1 + stsI
13: end for




AO-ADMM (2)

Algorithm 1 CP-stream

Require: X, X, ..., X 7; forgetting factor u
I: initialize AY, ..., AV

. —1 2: Gop+ 0
A« (q/(") +p(A® 1 U)) (45(”) + pI)  sfort=1,..Tdo
4: sy < least-squares update (4.3)
4.7) < A(") Y- ijc [A — U} : 5: repeat
N 6: forn=1,..., Ndo
U+—U-+A-— A(”), 7 construct @™ and ¥® per (4.5) and (4.6)
) 8: p=tr(®V)/K
9: Aﬁ”) <+ ADMM iterates (4.7)
10: end for
11: until convergence

12: Gt = ,MGt_l + StSI
13: end for




